Exam.Code:0929 Sub. Code: 6914

1129

B.E. (Electronics and Communication Engineering) Fifth Semester

EC-507: Data Structure and Algorithms

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

X-X-X

- I. Attempt the following:
 - a) What is the prefix form of the following expression? A-B/(C * D E)
 - b) How does an array differ from an ordinary variable?
 - c) Define Linked List.
 - d) For an undirected graph with *n* vertices and *e* edges, what will be the sum of the degree of each vertex?
 - e) What is the significance of pointer in linked list?

(5x2)

UNIT - I

- II. Can a Queue be represented by circular linked list with only one pointer pointing to the tail of the queue? Substantiate your answer using an example. (10)
- III. What is a binary search tree? Draw the binary search tree for the following input: 14, 5, 6, 2, 18, 20, 16, 18, 9, 21 (10)
- IV. a) Write an operation to delete n nodes after m nodes of a linked list.
 - b) Give the syntax of searching a specific element in an array.

(2x5)

UNIT - II

V. What are the different ways to represent the graph? Represent the given graph using any two Methods

Build a procedure for adding two polynomials stored in linked lists. Verify steps of your procedure for the above two polynomials. (10)

Sub. Code: 6914

(2)

VI.	Convert the binary tree for the given expressions:			
	i)	Pre-order: / + * \$ 2 3 4 5		
			ABDGCEHIF	
	ii)	In-order:	1 + 2 * 3 \$ 4 - 5	
			DGBAHEICF	(10)
VII.	Explain the collision resolution techniques in hashing.			(10)

X-X-X