Exam.Code: 1031 Sub. Code: 7861

2021

M. Tech. (Material Science and Technology) Third Semester

MST-301: Magnetism and Super Conductivity

Time allowed: 3 Hours Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt any five of the following:
 - a) Explain variation of the superconducting transition temperature with magnetic fields.
 - b) Explain, graphically, the variation of the penetration depth with temperature.
 - c) What are the spintronic devices? List out their applications.
 - d) What is specific heat? Discuss its variations with temperature for normal and superconducting material.
 - e) The critical temperature for mercury with isotopic mass 199.5 is 4.185 K. Calculate its critical temperature when its isotopic mass changes to 203.4.
 - f) Show that superconductor behaves as perfect diamagnetic material.
 - g) Show, graphically, the variation of susceptibility with temperature for ferromagnetic, paramagnetic and anti-ferromagnetic material. (5x2)

UNIT - I

- II. a) Describe Neel's theory of anti-ferromagnetism and show how the ferromagnetic behaviour of ferrites can be explained with Neel's theory.
 - b) Draw B-H curve for a ferromagnetic material and identify the retentivity, and the coercive field on the curve. What is the energy loss per cycle? (6,4)
- III. a) What are the failures of Langevin's theory? Describe how it was fixed with Weiss theory.
 - b) A magnetic material has a magnetization of 3300 ampere/meter and flux density of 0.0044 Wb/m². Calculate the magnetizing force and the relative permeability of the material. (6,4)

P.T.O.

- IV. a) Describe variation of the spontaneous magnetization with temperature.
 - b) Write a short note on Giant and Colossal magnetoresistance.
 - c) Explain the principle of Gouy method to determine the magnetic susceptibility. (3,4,3)

<u>UNIT – II</u>

- V. a) What do you understand by superconductivity? Describes the London theory, including mathematical aspects, for the explanation of the phenomena of superconductivity.
 - b) What do you understand by the penetration depth and the coherence length in superconductivity? What is the relation between these two quantities? (6,4)
- VI. a) Explain the BCS theory to describe the phenomena of superconductivity!
 - b) The London penetration depths for Pb at 3 K and 7.1 K are 39.6 nm and 173 nm, respectively. Calculate its transition temperature and as well as penetration depth at 0 K. (6,4)
- VII. a) Describe the principle of a superconducting quantum interface device (SQUID). List out their potential engineering applications.
 - b) Discuss thermodynamics of the superconducting transition and derive Rutger's formula for specific heat.
 - c) A superconducting Pb has a critical temperature of 3.7 K in zero magnetic field and critical field at 0.0306 Tesia at 0 K. Find the critical field at 2 K. (4,3,3)