2021

B.E. (Electrical and Electronics Engineering)

Third Semester

MATHS-301: Linear Algebra and Complex Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

Question I (a) Find the rank of the following matrix by reducing it to its row echelon form:

$$A = \left[\begin{array}{rrr} 1 & -2 & 0 \\ 3 & 2 & 1 \\ 2 & 3 & 7 \\ -1 & 2 & 0 \end{array} \right]$$

- (b) Let $P_2(t)$ be the vector spaces of all polynomials of degree ≤ 2 in a single variable t. Show that the polynomials $p_1 = t + 1$, $p_2 = t - 1$ and $p_3 = (t - 1)^2$ form a basis of $P_2(t)$.
 - (c) Find the eigen values and eigen vectors of the matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.
 - (d) Solve the equation $e^{2z-1} = 2$ for complex number z.
 - (e) State Cauchy's Residue theorem. Use it to evaluate $\int_{|z|=1}^{\infty} \frac{1}{z} dz$

 $(2 \times 5 = 10)$

Part A

Question II (a) Solve the following system of linear equations using Gauss elimination method.

$$2x_1 + \frac{1}{2}x_2 + 3x_3 + \frac{1}{3}x_4 = 1$$
$$\frac{1}{5}x_1 + 2x_2 + x_3 + 5x_4 = 0$$
$$x_1 + x_2 + x_3 + 2x_4 = 2$$

(b) When are two square matrices of the same order said to be similar? Prove that two similar matrices have the same eigen values.

(5+5=10)

Question III (a) Find the eigen values and eigen vectors of the following matrix A.

$$A = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 1 & 2 & 0 & -2 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Is this matrix diagonalizable?

(b) Let $G: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear mapping defined by $G(\mathbf{x}, \mathbf{y}, \mathbf{z}) = (\mathbf{x} + 2\mathbf{y} - \mathbf{z}, \mathbf{y} + \mathbf{z}, \mathbf{x} + \mathbf{z})$ y-2z) Find a basis and the dimension of (a) the image of G, (b) the kernel of G.

(5+5=10)

Question IV (a) State the Cayley-Hamilton theorem. Using it, invert the matrix

$$A = \left[\begin{array}{rrr} 1 & 1 & 0 \\ -1 & 1 & 2 \\ 2 & 0 & -1 \end{array} \right].$$

(b) Consider the following two bases of
$$\mathbb{R}^2$$
: $S = \{u_1, u_2\} = \{(1, -2), (3, -4)\}$ and $S' = \{v_1, v_2\} = \{(1, 3), (3, 8)\}$

- (i) Find the change of basis matrix P from S to S'.
- (ii) Find the change of basis matrix Q from S' to S.
- (iii) Verify that $Q = P^{-1}$ (5+5=10)

Part B

Question V (a) (i) Find all roots of the equation $\sin z = \cosh 4$ by equating the real parts and the imaginary parts of $\sin z$ and $\cosh 4$.

(ii) Find all roots of the equation $\cos z = 2$.

(b) Let u and v denote the real and imaginary components of the function f defined by the equations

$$f(z) = \begin{cases} \frac{(\overline{z})^2}{z} & \text{when } z \neq 0, \\ 0 & \text{when } z = 0. \end{cases}$$

Verify that the Cauchy-Riemann equations are satisfied at the origin z=0 but f'(0) nevertheless fails to exist.

(5+5=10)

Question VI (a) Define the complex logarithm function. Discuss its continuity and differentiability.

(b) Use the Cauchy's residue theorem to evaluate the integral $\int_C \frac{5z-2}{z(z-1)} dz$ when C is the circle |z|=2 described counter clockwise. (5+5=10)

Question VII (a) Give two Laurent series expansions in powers of z for the function $\frac{1}{z^2(1-z)}$ and specify the regions in which those expansions are valid.

(b) What the image of first quadrant in the z-plane by the mapping $f(z) = z^2$ in the w-plane? Explain. (5+5=10)