B.E. (Electronics and Communication Engineering)

Sixth Semester

EC-624: Control System

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

I Short answer type questions.

(01x10)

- a. What are the standard test signals used in time domain analysis?
- b. What are the frequency domain specifications?
- c. Write any two properties of eigenvalues.
- d. What are linear and nonlinear systems?
- e. What is the necessary and sufficient condition for stability?
- f. Mention the need for state observer?
- g. What is zero state response?
- h. Mention the advantages of state space modeling using physical variable?
- i.Define complete observability.
- j. What is signal flow graph?

Section -A

II a) Write the dynamic equation in respect of the mechanical system given in Fig.1. Also obtain equivalent electrical network using force-voltage analogy. (05, 05)

b) Determine the transfer function C(S)/R(S) for the block diagram shown in Fig.2.

Fig. 2

- III a) Explain the differences between open loop and closed loop control system and write the effects of Feedback in control systems
 - b) What is steady state error? Discussstatic error coefficients.
- IV a) Derive the expressions for rise time, peak over shoot, settling time of Secondorder system(05, 05)of unit step input.
 - b) Determine the stability of a control system by Routh criterion with the following given open-loop transfer function.

$$G(s)H(s) = \frac{K(s+2)}{s(s+3)(s^2+2s+3)}$$

(05, 05)

Section-B

- V a) Sketch the Bode plot for the open loop transfer function $G(s) = \frac{10(s+3)}{s(s+2)(s^2+4s+100)}$ (05, 05)
 - b) Sketch the root locus diagram for a unity feedback system with its open loop function as $G(s) = \frac{K(s+3)}{s(s^2+2s+2)(s+5)(s+9)} .$ Find the value of K at a point where the complex poles provide a damping factor of 0.5.
- VI a) For the given open loop transfer function $G(s) = \frac{K}{s(s+4)(s+6)}$; Design a suitable lead (05,05)

Compensation so that phase margin is $\geq 30^{\circ}$ and velocity error constant $K_v \geq 15$.

b) Determine the following: i) State transition matrix ii) Controllability and observability for the state equation of a linear time-invariant system given in Fig.3.

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$
Fig. 3

VIIDetermine the value of the gain constant K for the system with open loop transfer function

$$G(s) = \frac{K}{s(1+0.2s)(1+0.01s)} \ ;$$

so that it has a phase margin of about 35° for this value of K, find the new gain margin.