Exam.Code:0918 Sub. Code: 6797

6

1059

B.E. (Computer Science and Engineering) Sixth Semester Elective – I

CS-605B: Soft Computing

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I (Section-A) which is compulsory and selecting two questions from each Section B-C.

Y-Y-Y

	Section-A	
Q1.	a)Expiain role of learning rate in neural networks	10
	b)Specify the working principle of fuzzy logic. List the applications of fuzzy logic.	
	c) Discuss Kalman filters briefly.	
	d) Draw architecture of Bayesian network.	
	e)What is the problem of local minima in genetic algorithms	
	Section-B	
Q2.	a) Consider the following planning problem:	5
	Initial state: Have(Cake)	
	Goal: Have(Cake) ^ Eaten(Cake)	
	Action Eat(Cake): Precond: Have(Cake) Effect: ¬Have(Cake) ∧ Eaten(Cake)	
	Bake(Cake): Precond: ¬Have(Cake) Effect: Have(Cake)	
	Give a description of this planning problem in terms of propositional formula.	
	b) What is hidden in hidden Markov model? Discuss various applications where the hidden Markov	5
	model is used?	
Q3.	Write a short note on	1
	a)knowledge representation under uncertainty b) Dempster Shafer theory	
Q4.	a) What are the common methods of de-fuzzification ? Illustrate the procedure with the help of an	5
	Example	3
	b) Let $A=((x1,0.5),(x2,0.7),(x3,0))$ and $B=(x1,0.8),(x2,0.2),(x3,1)$ are fuzzysets with associated	
	membership values. Find AUB(x1), AUB)(x2),AUB)(x3).	2
	c) What is the necessity to convert the fuzzy quantities into crisp quantities?	
	Section-C	1
Q5.	a) Calculate the output of neuron Y for the net shown in Figure.	T
	Use binary and bipolar input and sigmoidal activation functions.	
	b) Describe some attractive features of the biological neural	
	network that make it superior to the most sophisticated Artificial	
	Intelligence computer system for pattern recognition tasks.	-
Q6.		+
	i) Data clustering Algorithms ii) Neuro fuzzy controls.	
Q7.		+
	eight genes. Each gene can be any digit between 0 and 9.	
	Let the fitness of individual x be calculated as: $f(x) = (a + b) - (c + d) + (e + f) - (g + h)$, and let the	
	initial population consist of four individuals with the following chromosomes:	
	x1 = 65413532 $x2 = 87126601$ $x3 = 23921285$ $x4 = 41852094$.	1
	Evaluate the fitness of each individual, showing all your workings, and arrange them in order with the	
	fittest first and the least fit last. Perform crossover over these population using partially mapped	
	here are the lower in lose.	
	technique.	1