1415/19 (E) 6

Exam. Code: 1015 Sub. Code: 7760

1059

M.E. (Mechanical Engineering)-2nd Semester MME-201: Fluid Dynamics

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, selecting altleast <u>two</u> questions from each Unit.
**_*_

UNIT-I

- I. (a) Define with suitable examples and mathematical expressions; (i) steady flow, (ii) Unsteady flow, (iii) Uniform flow, (iv) Non-uniform flow.
 - (b) If the lines of motion are curves on the surfaces of cones having their vertices at the origin and the axis of z for common surface, prove that the equation of continuity is:

 $\frac{\partial f}{\partial r} + \frac{\partial (fu)}{\partial r} + \frac{2fu}{r} + \frac{\cos ec\theta}{r} \frac{\partial}{\partial \theta} (fw) = 0, \text{ where v and w are the velocity}$ components in the directions in which r and θ increase. (4+6)

- II. What is Euler's equation of motion? Derive it mathematically and how will you obtain Bernoulli's equation flow it? (10)
- III. (a) Write Navier-Stokes equation in Cartesian coordinates. Simplify the equation when (i) Fluid is incompressible and dynamic viscosity is constant, (ii) the fluid in incompressible and viscous effects are negligible.
 - (b) Why do we use potential flow theory? How is it helpful in representing the real life problems were viscous forces dominate inside the boundary?

 (5+5)
- IV. (a) What is a boundary layer? Differentiate between a laminar and turbulent boundary layers.
 - (b) Explain boundary layer separation with a neat sketch. What are the conditions under which separation takes place? (5+5)

UNIT-II

- V. (a) Find the stream function of the two-dimensional motion due to two equal sources and an equal sink situated midway between them.
 - (b) State and prove Kelvin's minimum energy theorem. (5+5)
- VI. (a) A circular cylinder is placed in a uniform stream. Find the forces acting on the cylinder.
 - (b) Differentiate between energy equation and momentum equation for compressible inviscid fluids. (6+4)

P.T.O.

(2)

- VII. (a) Write short notes on: -
 - (i) Dynamic similarity,
 - (ii) Inspection analysis
 - (b) Discuss plane Poiseuille flow mathematically and obtains the velocity profile. (5+5)

VIII. Write a note on: -

- (a) Isentropic flow and stagnation properties.
- (b) Write short notes on: -
 - (i) Prandtl number
 - (ii) Nusselt number (6+4)

**_*_