Exam.Code: 1018 Sub. Code: 7788

1059

M.E. Electronics Engineering (Power System) Second Semester

EE-8204 (b): Modeling and Analysis of Electrical Machines

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt any five questions.

x-x-x

I. For the given transfer function of a system

$$T(s) = \frac{b_0}{s^3 + a_2 s^2 + a_1 s + a_0}$$

- II. Obtain the dynamic phase-variable state-model for a system described by the differential equation. (10)
- III. Develop the expression for force in a singly-excited electromechanical system in terms of energy and co-energy. Also, find out the expressions for flux linkage, and current, i in terms of energy and co-energy. (10)
- IV. Starting from voltage equations of three-phase induction machine in 'arbitrary reference frame', develop the voltage equation based model of the same machine in 'synchronously rotating reference frame'. (8,2)
- V. Also, draw its equivalent circuit model in 'synchronously rotating reference frame'.
- VI. Derive the steady-state equivalent circuit from the dynamic equations of three phase induction motor. (10)
- VII. Develop the electromechanical dynamic model of a symmetrical single phase induction motor with its equivalent circuit representation. (10)
- VIII. a) Develop the detailed nonlinear electromechanical dynamic model of permanent magnet synchronous machine (PMSM).
 - b) Compare the power output ratio of PM dc brushless motor and PM synchronous motor. (6,4)

P.T.O.

Sub. Code: 7788

(2)

- IX. Explain various reactances and time constants from the d-axis equivalent circuits of a three-phase synchronous machine. (10)
- X. Write short notes on:
 - a) Switched reluctance motor
 - b) Parks transformation

(2x5)

x-x-x