Exam.Code:0918 Sub. Code: 6795

$\dot{0}$

1059

B.E. (Computer Science and Engineering) Sixth Semester CS-604: Complier Design

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I (Section-A) which is compulsory and selecting two questions each from Section B-C.

x-x-x

	Section-A	10
Q1.	a) Differentiate between shift-reduce and Operator Precedence Parsers.	
) Why parsing is implemented as a separate phase?	
	c) Differentiate synthesis and inherited attributes. Under what cases, inherited attributes are	
	d) How can we have conflicts in LR parsers?	
	e) What is maximal munch rule?	
	Section-B	5
Q2.	a) What is Lex. Write a Lex program to count the number of words and lines in a sample	
	program.	5
	b) Explain the construction of LALR parsers from CLR parser. Is it always possible to do so?	
	Justify your answer.	6
Q3.	a) Consider the below grammar. Can it be used for operator precedence parsing? If yes proceed	
	with parsing of the string id + id * id. If not, modify the grammar appropriately and do the parsing	
	for the same string.	
	E → EAE id A → + X	4
	b) Define YACC. Which is favored by YACC in case of shift-reduce and R-R conflict,?	L
Q4.	a) Show the parsing of the input string int id,id; using shift-reduce parser for the grammar	7
	S -> TL; T ->int float L ->L,id id.	
	Highlight handles and content of stack at each step. Assume suitable priority order.	
	b) Is the below grammar suitable for predictive parsing. Justify	3
	$S \rightarrow FR$ $R \rightarrow S \mid \varepsilon$ $F \rightarrow id$. Section-C	1
		T:
Q5.	a) What is the purpose of code optimization? Explain in detail loop optimization with example.	1
	b) Generate three address code for the given expression:- d= (a-b) + (a-c) + (a-c)	1.
	Convert this three address code to a code sequence using code generation algorithm.	1
Q6.	a) Consider the following Syntax Directed Translation Scheme (SDTS), with non-terminals {E, T}	
	and terminals {x,y}.	
	$E \rightarrow xT \{ print 1 \}$ $E \rightarrow x \{ print 2 \}$ $T \rightarrow Ey \{ print 3 \}$	
	Write the output printed by a top down and bottom-up parser for the input xxy.	
	b) Define symbol table. What are the contents of a symbol table? Explain in detail the symbol	1
	table organization for Block-Structured languages.	
Q7.	a) What is Activation Record and Program Control Block? How are these useful in run time	8
	memory management?	
I I	b) Write a short note on storage allocation strategies of compiler.	