Exam.Code:0922 Sub. Code: 7014

#### 1059

# B.E. (Information Technology) Fourth Semester MATHS-403: Discrete Structures

Blowed: 3 Hours

Max. Marks: 50

Attempt <u>five</u> questions in all, including Question No. 1 (Section-A) which is compulsory and selecting two questions each from Section B-C.

x-x-x

### Section - A

Answer the following:

- a) Check whether  $(p \land (\neg p \lor q)) \land \neg q$  is tautology or contradiction.
- b) Define Klein Four group.
- c) Define total order set and Lexicographic order with examples.
- d) Let  $R = \{(1,2), (2,2), (3,4), (4,1)\}$  be any relation. Check whether R is symmetric, antisymmetric or transitive. Also, find symmetric, antisymmetric and transitive closures of R.
- e) If  $f(x) = \sqrt{x^2 + 1}$  and  $g(x) = x^3 + 2$ , calculate  $f \circ g$  and  $g \circ f$ .

 $(5 \times 2 = 10)$ 

### Section - B

- Consider the set  $A = R^2 (0,0)$ . Define a relation  $\sim$  on A by  $(x_1, x_2) \sim (y_1, y_2)$  if there exists t > 0 such that  $x_1 = ty_1$ ,  $x_2 = ty_2$ . Prove that it is an equivalence relation. Describe equivalence class of (1, 2).
- **b)** Define distributive Lattice. A Lattice is said to be modular if for all  $a, b, c, a \leq c$  implies that  $a \vee (b \wedge c) = (a \vee b) \wedge c$ . Show that a distributive lattice is modular. Show that the lattice shown in Figure 1 is non-distributive lattice that is modular.



(05+05)

**Does** the formula  $f(x) = 1/(x^2 - 2)$  define a function  $f : \mathbb{R} \to \mathbb{R}$  or a function  $f : \mathbb{Z} \to \mathbb{R}$ ? Here  $\mathbb{Z}$  and  $\mathbb{R}$  stand for set of integers and set of real numbers, respectively.

P.T.O.

- b) Suppose that in a group of 6 persons, each pair are either friends or enemies. Show that there are 3 persons who are either mutual friends or mutual enemies.
- c) Let S be a set of six positive integers whose maximum is at most 14. Show that the sums of the elements in all the nonempty subsets of S cannot be all distinct.

(03+03+04)

4. a) Check the validity of the argument:

Code:05t22

of Cade 1014

If there is a chance of rain or her red headband is missing, then Lois will not mow her lawn. Whenever the temperature is over 80°F, there is no chance for rain. Today the temperature is 85°F and Lois is wearing her red headband. Therefore Lois will mow her lawn.

b) Let p(x), q(x) be open statements in the variable x, with a given universe. Prove that

$$\forall x \ p(x) \lor \forall x \ q(x) \Rightarrow \forall x \ [p(x) \lor q(x)]$$

Also find the counterexample for the converse.

(05 + 05)

## Section - C

- 5. a) Define the following with suitable examples:
  - i. Bipartiate Graph
  - ii. Chromatic number of graph
  - iii. Euler circuit and Hamiltonian circuit
  - iv. Isomorphic graphs
  - b) In how many ways can the integers 1, 2, 3, ..., 10 be arranged in a line so that no even integer is in its natural position?

(08 + 02)

- 6. a) Find and solve a recurrence relation for the number of binary sequences of length n that have no consecutive 0's.
  - b) Solve the following recurrence relation using method of generating functions:

$$a_{n+2} - 5a_{n+1} + 6a_n = 2, \ n \ge 0, \quad a_0 = 3, \quad a_1 = 7.$$

(05 + 05)

- 7. a) Define Cosets. Show that If G is a finite group of order n with H a subgroup of order m, then m divides n.
  - b) If G be a group with H finite and  $H \subseteq G$ , then H is a subgroup of G if and only if H is closed under the binary operation G.

(05 + 05)