1059

B.E. (Electrical and Electronics Engineering) Fourth Semester

AS-401: Numerical Analysis

lowed: 3 Hours

:0

Max. Marks: 50

Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use of non-programmable calculator is lowed.

x-x-x

- (a) If $(\sqrt{3} + \sqrt{5} + \sqrt{7})$ is rounded to four significant digits, then find the absolute error.
- (b) Define the order of convergence of Newton-Rapson method.
- (c) Solve the equations: $x^2 + y = 5$, $y^2 + x = 3$.
- (d) Find the eigen values of $\begin{bmatrix} 1 & 4 \\ 3 & 2 \end{bmatrix}$
- (c) If λ is an eigen value of A, then show that $1/\lambda$ is an eigen value of $(5 \times 2 = 10)$

PART A

(a) Find the value of c^x using series expansion for x = 0.5 with an absolute error less than 0.005:

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

- (b) Using bisection method find a real root of the equation $\cos x xe^x = 0$ correct to four decimal places. (6)
- (a) Find the root of $xe^x = 3$ by Regula falsi method correct to three decimal places. (5)
- (b) Solve $x^3 + 2x^2 + 10x 20 = 0$ by Newton-Rapson method. (5)
- (a) Using Newton's backward difference formulae, construt an iterpolating polynomial of degree 3 for the data: f(-0.75) = -0.0713125, f(-0.5) = -0.02475, f(-0.25) = 0.3349375, f(0) = 1.10100. Hence find f(-1/3).
- (5)(b) Apply Hermite's formula to interpolate for sin(1.05) from the following data:

x	$\sin x$	$\cos x$
1.00	0.84147	0.54030
1.10	0.89121	0.45360

PART B

(a) Solve by Gauss-Seidel method, the following system of equations: (5)

28x + 4y - z = 32, x + 3y + 10z = 24, 2x + 17y + 4z = 35

(b) Find the largest eigen-value and the corresponding eigen-vector of the matrix using power method: (5)

$$\left[\begin{array}{cccc}
1 & -3 & 2 \\
4 & 4 & -1 \\
6 & 3 & 5
\end{array}\right]$$

6. (a) Evaluate the following intergal using Simpson's 1/3rd rule. Compare the error with the exact value. (5)

$$I=\int_0^1 \frac{x^2}{1+x^3} dx$$

- (b) Evaluate $\int_0^2 \frac{dx}{x^2 + 4}$ using Romberg's method. Hence obtain an approximate value of π . (5)
- 7. (a) Apply Taylor's method to obtain the approximate value of y at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0. Compare the numerical solution obtained with the exact solution. (5)
 - (b) Use the method of least squares to fit the straight line Y = a + bX to the data (5)

æ	1	2	3 40	4	5
y	14	27	40	55	68