Exam. Code: 0943 Sub. Code: 7065

1079

B. Engg. (Mechanical Engg.)

7th Semester

MEC-702: Automatic Controls

**_*_

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attem

Attempt <u>five</u> questions in all, including Q. No. 1 (Part-A) which is compulsory and selecting atleast <u>two</u> questions each from Part-B & C. Calculator is allowed.

Part A

2 1 a Why derivate action cannot be used alone. 2 b Explain in brief ON-OFF control action. c Write the Laplace transform for following input signal i. Step ii. Ramp iii. Parabolic iv. Impulse 2 d Define: i. Stability ii. Relative stability 2 e Differentiate between Regulators and servo mechanism 5 a Draw the block diagram of hydraulic Servo System. Explain function of each block. 2 b Draw block diagram for automobile driving system. Explain function of each block. 5 a Write the differential equations governing the mechanical system shown in figure. Also 5 3

b Derive the transfer function of the block diagram by block reduction or signal flow graph.

5

4	8	Compare PI, PD and PID controller.	
5.	0	Explain the working of a temperature control system (Thermal control system). Part-C System is given by differential equation d ² y/dx ² +4(dy/dx)+8y =8x. Where y is output and x is input. Determine time domain specification. i) Rise Time iii) Peak Time iii) Settling Time iv) Peak overshoot.	5 5
6.		Consider the system with characteristic equation $\ddot{x} - (k+2)\dot{x} + (2k+5)x = 0$. a) Determine the value of k for which system is (i) stable, (ii) limitedly stable, (iii) unstable.	10
7.		b) Stable case for what values of k is the system (i) Under damped (ii) Over Damped. Define: a)Poles b) Zeros c)Order of system d) Characteristic equation	
	Ь	For the system with transfer function $Y(S)/U(S)=s^2+2s+1/(S^3+7S^2+14s+8)$ write the state-space equations, using partial fraction methods	5

*. *. *.