Exam. Code: 0937 Sub. Code: 6993

1079

B. Engg. (Electrical & Electronics Engg.) 7th Semester

EE-708: Digital Signal Processing

Time allowed: 3 Hours

NOTE:

Attempt five questions in all, including Q. No. 1 which is compulsory and

selecting atleast two questions from each Part-A & B.

Q1a) Find the energy spectral density for the following signal

$$x(t) = e^{-2t} u(t) ?$$

(2 Marks)

- b) Determine the frequency response of FIR filter defined by y(n)=0.25 x(n)+x(n-1)+0.25x(n-2). Calculate the phase delay and group delay? (2 Marks)
- c) An analog signal $x(t) = 3\cos(50\pi t) + 2\sin(300\pi t) 4\cos(100\pi t)$ is sampled with sampling frequency of 200 Hz. What are the frequencies in recovered signal? (2 Marks)
- d) Compute the computation efficency of 1024 point radix 2 FFT over 1024 point DFT? (2 Marks)
- e) Determine the output of the recursive system described by the following difference equation y(n+2)+3y(n+1)+2y(n)=u(n) where y(0)=0,y(1)=1 and u(n) is unit step response?

Part-A

Q2a) Find x(n) of

$$X(z) = \frac{z(z^2 + z - 30)}{(z - 2)(z - 4)^3}$$
 for ROC |z|> 4 using partial fraction method?

(5Marks)

(2Marks)

b) Check for following systems are linear, causal, time invariant and stable

$$i) y(n) = x(-n)$$

ii)
$$y(n) = x(n^2)$$

iii)
$$y(n) = x(n)x(n-1)$$

(5 Marks)

iv)
$$y(n) = nx(n)$$

$$v) y(n) = sgn|x(n)|$$

P.T.O.

Sub. Code: 6993

(2)

Q 3a) The impulse response h(n) of a certain LTI system is given by $h(n)=a^nu(n)$ where 0<a<1. The system is excited by x(n)=u(n), a step sequence. Find y(n) using convolution sum? (5Marks)

- b) Determine the output response y(n) if $h(n)=\{1,1,1\}$ and $x(n)=\{1,2,3,1\}$ by using i) linear convolution and ii) circular convolution? (5 Marks)
- Q 4 a) Explain the difference between DFT and DTFT? Also explain Parseval's theorem of DFT? (5 Marks)
- b) Find the IDFT of sequence X(k) = (10, -2+j2, -2, -2-j2) using radix 2 DIT FFT algorithm? (5 Marks)

Part-B

Q5a) For the analog transfer function $H(s) = \frac{s+0.3}{(s+0.3)^2+16}$

Determine H (z) using bilinear transformation. With T=1 sec?

(5 Marks)

b) Obtain the cascade realizations of linear phase FIR filter for the following systems

$$H(z) = (1 + 0.5z^{-1} + z^{-2})(2 + 0.25z^{-1} + 2z^{-2})$$
(5 Marks)

Q6 a) What is Gibb's Phenomena? How it is eliminated using different kind of window functions? (5 Marks)

b) The desired response of a LPF is

$$H_a(w) = e^{-j3w} \qquad 0 \le w \le \frac{\pi}{2}$$
$$= 0 \qquad \frac{\pi}{2} \le w \le \pi$$

Determine filter coefficents h(n) for N=7 using type 1 frequency sampling method

(5 Marks)

Q7a). Explain how Harvard architecture as used by the TMS320 family differs from the strict Harvard architecture? Compare this architecture with the architecture of Von-Neumann processor

(5 Marks)

b) With a suitable diagram describe the functions of multiplier/adder unit of TMS320C5X DSP processor

(5 Ma-