Exam.Code:0935 Sub. Code: 6984

B.E. (Electrical and Electronics Engineering) Fifth Semester

EE-508: Electromagnetic Fields Theory

Time allowed: 3 Hours

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting

x-x-x

- Attempt the following:-I.
 - a) Give practical examples for diverging and curling fields.
 - b) Draw the equipotential lines and electric field lines for a parallel plate capacitor.
 - c) Write Laplace equation and its applications.
 - d) Define Poynting vector.
 - e) State the magnetic boundary conditions.

(5x2)

UNIT -I

- a) Discuss about the electric field intensity due to a sheet of charge. II.
 - b) Derive the Stoke's theorem and give any one application of the theorem in electromagnetic fields.
- a) Calculate the capacitance of a parallel plate capacitor having an electrode area of III. 100 cm². The distance between the electrodes is 4mm and its dielectric used has a permittivity of 3.5. The applied potential is 100 volts.
 - b) Derive the Laplace equation. Obtain the Laplacian's operator in the cylindrical (4,6)coordinate system.
- a) Derive the Poisson's equation. IV.

b) Define divergence theorem and prove the same.

(2x5)

<u>UNIT – II</u>

- a) Derive H due to a circular current loop and extend the same to compare H due to a ٧. long solenoid.
 - b) State and explain Ampere's circuital law and mention its some simple applications.

P.T.O.

- VI. a) Derive Maxwell's equation from Faraday's law and Ampere's law in integral form differential form and vector form.
 - b) Define displacement current.

(8,2)

- VII. a) Define Biot-Savart law.
 - b) Differentiate between electric and magnetic circuits.
 - c) Derive the expression for inductance of a solenoid.

(3,3,4)

X-X-X