B.E. (Electronics and Communication Engineering) Fifth Semester

EC-513: Control Systems

Time allowed: 3 Hours

55

6

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting

x-x-x

- i) What is the effect of positive and negative feedback on any system? 0.1
 - (ii) How transfer function can be obtained from state model?
 - (iii) What is the necessity of a compensator?
 - (iv) Define state vector as used in state space analysis?
 - (v) Give the importance of Gain Margin and Phase Margin?

(5 x 2)

. Part A

Q.2 (i) From the block diagram determine the C/R using block diagram reduction. (5)

- (ii) A unity feedback control system has its open loop transfer function given by $G(s) = (4s+1)/4s^2$ Determine an expression for the time response when the system is subjected to (i) unit impulse (5) input function and (ii) unit step input function.
- Q.3 (i) What is the necessary and essential condition for the stability according to Routh's Criterion? Hence find the stability of the system described by characteristic equation

$$s^5 + s^4 + s^3 + s^2 + 3s + 15 = 0 ag{5}$$

(ii) Write short notes on following two:

a) DC Techo-generators

(5)

b) Error detectors -potentiometers and synchro's.

P.T.O.

Q.4. Draw the root loci of the open loop transfer function of the feedback control system given below and comment about the stability. $G(s)H(s) = \frac{K}{s(s+4)(s+5)}$ (10)

Part B

Q.5 Sketch the Bode plot for the system whose transfer function is $G(s) = \frac{100(1+0.1s)}{s(1+0.2s)(1+0.5s)}$ and determine the following and comment upon the stability.

- (i) Gain crossover frequency
- (ii) Phase crossover frequency
- (iii) Gain margin
- (iv) Phase margin for the transfer function

(10)

Q. 6 (i) Explain the significance of controllability and observability of a state model using one physical example. Test the following system for these two characteristics:

$$\dot{x}(t) = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{vmatrix} x(t) + \begin{vmatrix} 0 \\ 0 \\ 1 \end{vmatrix} u(t)$$

$$y(t) = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} x(t)$$
for selection of compensators in

- (ii) List various factors for selection of compensators in control system and hence justify the need for compensation.

 (4)
- Q. 7 (i) what is meant by tuning of PID controller? Why is it important? Explain one empirical method used for tuning the parameters.
 - (ii) What is the importance of pole placement on system performance? Hence explain the pole placement design concept.

(5)