B.E. (Electronics and Communication Engineering) Fifth Semester

EC-502: Digital Signal Processing

_{Time allowed:} 3 Hours

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting

x-x-x

- 1. (a) Determine the Fourier transform of the signal: $x[n] = (-a)^n u[n]$
 - (b) Discuss sampling and reconstruction of signals.
 - (c) Determine the impulse response of the system using Z-transform

$$y[n] = 0.6y[n-1] - 0.08y[n-2] + x[n]$$

- (d) Compare FIR filters with IIR filters.
- (e) Differentiate fixed-point and floating-point numbers.

 $(5 \times 2 = 10)$

(5)

(4)

Section-A

- 2. Describe the following properties of a discrete-time system: Memoryless, Time-Invariant, Linear, Causal, and Stable. Check the following systems with respect to (10)these properties:
 - a. $y[n] = x[n] \sum_{k=-\infty}^{\infty} \delta[n-2k]$
 - b. $y[n] = \cos(2\pi x[n+1]) + x[n]$
 - c. y[n] = x(n) + n.x(n+1)
- 3. (a) Describe radix-2 DIT FFT algorithm with the help of butterfly diagram. (5)
 - (5) (b) Describe time-frequency analysis using wavelet transform.
- 4. (a) Determine the signals having z-transform

 $X(z) = \frac{1}{1 - 1.5z^{-1} + 0.5z^{-2}}$ (5)

(b) Describe the circular convolution property of DFT.

Section-B

(6)

5. (a) A LPF is to be designed with the following desired response π $H_d(\omega) = \begin{cases} e^{-j3\omega} & 0 \le \omega \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le \omega \le \pi \end{cases}$

Determine the filter coefficients h(n) for M=7 using hamming window.

(b) Discuss finite word length effects present in digital filters. P.T.O.

(5)

(5)

6. (a) Obtain direct, cascade and parallel form structure of system

$$H(z) = \frac{(3+5z^{-1})(0.6+3z^{-1})}{(1-2z^{-1}+2z^{-2})(1-z^{-1})}$$

- (b) Describe the frequency domain representation of multirate system.
- 7. Describe the following:
 - ♠. Architecture of TMS 320CXX
 - Polyphase decomposition

(5, 5)