## 1079

## B.E. (Electrical and Electronics Engineering) Fourth Semester

EE-402: Control Engineering

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Graph paper and semilog graph paper shall be provided. Assume and specify any missing data.

x-x-x

a) Differentiate between linear and non linear system.

5x2

- b) How is a servo motor different from a DC motor?
- c) Explain and differentiate the terms: absolute stability and relative
- d) What is the advantage of expressing Bode magnitude in decibels?
- e) What is importance of checking location of closed loop poles on the imaginary axis of complex s-plane?

Obtain the output of the system in Fig. 1 using block reduction technique. (5) II (a)



Fig.1

Discuss the effect of feedback on: (b)

(5)

- (i) Sensitivity to parameter variation.
- (ii) Control of effect of disturbance signals.
- Derive the Force (Torque)- Current analogy between the quantities of mechanical (5)III (a) (translational and rotational) and electrical systems.
  - Determine the time response specifications and expressions for output for (b) unit step input(y-output, x-input) to a system having system equation as follows:

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 16y = 9x$$

- IV.(a) Define steady state error and error constants with respect to unit step, unit velocity and unit acceleration inputs. How can steady state error be reduced?

  (b) Using Routh-Hurwitz criterion, check the stability of the system with (5)
  - (b) Using Routh-Hurwitz criterion, check the stability of the system with characteristics equation as:  $s^4 + 2s^3 + 8s^4 + 12s^3 + 20s^2 + 16s + 16 = 0$

## Part- B

V The open loop transfer function of a unity feedback control system is  $G(s)H(s) = \frac{K}{s(s+4)(s^2+4s+20)}$  (10)

Draw the root locus of the system determining the important parameters.

VI Construct a Bode Plot for the system whose open-loop transfer function is (10) given by:

$$G(s)H(s) = \frac{4}{s(1+0.5s)(1+0.08s)}$$

and determine (a) Gain Margin (b) Phase Margin and the closed loop stability.

- VII (a) Explain the construction and working of Synchros as error detector. (5)
  - (b) Explain how relative stability can be assessed using Nyquist Criterion. (5)