Exam.Code:0908 Sub. Code: 6702

B.E. (Biotechnology) Fourth Semester BIO-412: Thermodynamics

Time allowed: 3 Hours

j) State Zeroth law of thermodynamics.

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting

<i>X-x-x</i>	
Q.1.a)	The locus of standard liquid line and as
b)	The state of the s
c)	The enthalpy of dry saturated steam with an increase in pressure. A law which is applicable only to ideal vapors and liquids, that equates the equilibrium partial During Joule Thompson average.
d)	expansion of gases
e)	The amount of heat absorbed to evaporate 1 kg of water from its saturation temperature without change of temperature is called
	change of temperature is called
f)	The SI units of pressure
g)	Define closed system.
h)	As pressure approaches zero, fugacity coefficient value tends to
i)	Assuming CO ₂ obeys perfect gas law, calculate the density of CO ₂ in kg/m ³ at 263°C and 2 atm.
1.	in the second control of the second control

SECTION-A

- Q.2a). An ideal gas contained in a vessel of 0.1 m³ capacity is initially at 1 bar and 298 K. It is heated at constant volume to 400 K. Calculate the change in internal energy, change in enthalpy, work done and heat supplied. Assuming $C_v = 21.686 \text{ J/mol K}$
 - b). Estimate the molar volume of CO₂ at 500 K and 100 bar pressure using the vander Waals equation. The vander Waals constants are $0.364~\text{m}^4\text{N/mol}^2$ and $4.267\times10^{-5}~\text{m}^3\text{/mol}$. (5,5)
- Q.3a). With the help of a diagram explain the Claude process for air liquefaction. Derive an expression in terms of enthalpies that can be used to calculate the liquid yield.
 - b). A Carnot refrigerator requires 1.1 kW per ton of refrigeration to maintain a region at a low temperature of -30°C. Determine COP of the Carnot refrigerator, higher temperature of the cycle and the heat rejected in kW per ton of refrigeration. One ton of refrigeration=3.52 kW. (5,5)
 - Q.4 Explain the vapor absorption refrigeration cycle? What is the function of the analyzer and the (10)rectifier?

 $(1\times10)=10$

SECTION-B

Q.5. The vapour pressures of benzene (1) and ethyl benzene (2) can be evaluated by the Antoine equations $lnP_{1}^{s}(kPa) = 13.8858 - \frac{2788.51}{T(K)-52}$ Assuming that the solution formed by benzene and ethyl benzene is an ideal solution, Calculate

Assuming that the solution former y_1 . x_1 and y_1 at 373 K and 101 kPa

2. P and y_1 at 373 K and $x_1 = 0.5$

3. P and x_1 at 373 K and $y_1 = 0.5$

4. The fraction of the system that is liquid at 373 K and 101 kPa if the overall composition of the system is 85 mole% benzene.

Q.6a). The partial molar volumes of acetone and chloroform in a mixture in which mole fraction of acetone is 0.5307 are 74.166×10⁻⁶ m³/mol and 80.235×10⁻⁶ m³/mol respectively. What is the volume of 1 kg of the solution?

b). Define fugacity and fugacity coefficient.

(5+5)

Q.7. Determine the equilibrium constant at 2600 K for the reaction $CO(g) + \frac{1}{2}O_2(g) \rightarrow CO_2(g)$. Initially a mixture of 1 mol of CO and 0.5 mol of O_2 is present in the reactor. Determine the equilibrium composition of this mixture at 1 bar.

Given that the standard heat of reaction and standard free energy of reaction at 298 K is -283 kJ/mol and -257.12 kJ/mol respectively. The specific heat (J/mol K) data is given below

$$\begin{split} &C_{p_{CO}} = 28.07 + 4.63 \times 10^{-3} T - 0.26 \times 10^{-5} T^{-2} \\ &C_{p_{O_2}} = 28.01 + 4.21 \times 10^{-3} T - 1.89 \times 10^{-5} T^{-2} \\ &C_{p_{CO_2}} = 45.37 + 8.69 \times 10^{-3} T - 9.62 \times 10^{-5} T^2 \end{split}$$

(10)