Exam. Code: 0907 Sub. Code: 6699

## B. Engg. (Bio-Technology)-3<sup>rd</sup> Semester AS-301: Engg. Mathematics-III

(Common)

Time allowed: 3 Hours

NOTE:

Attempt five questions in all, including Q. No. 1 which is compulsory and selecting atleast two questions from each Part-A & B. Each question carries equal marks. Use of simple calculator is allowed.

- 1. (a) State the sandwich theorem for sequences. Apply it to prove that  $\left\langle \frac{\cos n}{n} \right\rangle$  is a convergent sequence.
- (b) State the nth term test for divergence. Examine whether the series  $\sum_{n=1}^{\infty} \frac{n+1}{n}$  is convergent or divergent.  $(5 \times 2) = 10$
- (c) State Cayley-Hamilton theorem. Write down its any two applications.
- (d) Explain the differences and similarities between  $e^x$  and  $e^z$ .
- (e) Define fixed and critical points of the mapping. Find the same for  $w = \frac{3z-4}{z+\sin z}$ .

## **PART-A**

- 2. (a) Examine the convergence or divergence of the following sequences:
  - (i)  $a_n = \tanh n$ , (ii)  $a_n = \tan^{-1} n$ , (iii)  $a_n = n \sqrt{n^2 n}$ , (iv)  $a_n = \ln n \ln(n+1)$
  - (b) Examine the convergence or divergence of the following series:
  - (i)  $\sum_{n=1}^{\infty} \frac{1}{n^p}$ , (p is a real consatnt), (ii)  $\sum_{n=0}^{\infty} \frac{2^n + 5}{3^n}$ .
- 3. (a) State and prove Leibnitz test for alternating series. Examine the convergence, absolute convergence and divergence of the series:  $\sum_{n=1}^{\infty} (-1)^n (\sqrt{n+1} - \sqrt{n})$ .

Contd.....P/2

(b) If the system of equations: x + ay + az = 0; bx + y + bz = 0; cx + cy + z = 0, where a,b,c are non-zero and non-unity, has a nontrivial solution, then prove that

$$\frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = 1.$$

4. (a) Examine whether the matrix  $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$  is diagonalizable or not.

If diagonalizable, obtain the matrix P such that  $P^{-1}AP$  is a diagonalizable matrix.

(b) Verify Cayley-Hamilton theorem for the matrix: 
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$$
.

## **PART-B**

- 5. (a) Examine whether  $w = \cos z$  is a bounded or unbounded function.
- (b) Prove that the function  $f(z) = \begin{cases} \left(\frac{-z}{z}\right)^z \\ \frac{z}{z} \end{cases}$ ,  $z \neq 0$  is not differentiable at z = 0, even

though C-R equations are satisfied there on.

- (c) Discuss the analyticity of  $f(z) = |z|^2$ .
- 6. (a) Explain and discuss the different type of isolated singularities. Give one example of each. Further, prove that if an analytic function w = f(z) has a pole of order m at  $z = z_0$ , then  $\frac{1}{f(z)}$  has a zero of order m at  $z = z_0$ .
  - (b) Discuss the mapping  $w = \sinh z$ .
- 7. (a) State residue theorem. Hence, evaluate  $\oint \frac{1}{c \sinh z} dz$ , where C is the circle |z| = 4 using it.
- (b) Evaluate  $I = \int_{0}^{2\pi} \frac{d\theta}{2 + \sin \theta}$  using complex integration.