

Exam.Code:0906 Sub. Code: 6660

1079

B.E. (Biotechnology)

Second Semester

MATHS-201: Differential Equations and Transforms

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use of non programmable calculator is allowed.

x-x-x

- 1. (a) Find the general solution of the differential equation: $y' = x \tan(y x) + 1$.
 - (b) Using power series method solve the differential equation: y' = -2xy.
 - (c) Find the differential equation of all the planes having equal x and y intercepts.
 - (d) Find the Laplace transform of $f(t) = t \sin 2t$.
 - (e) Find a period function and find the fundamental period of the function $f(x) = \cos(2x)$. (5 × 2 = 10)

PART A

2. (a) Find the general solution of the differential equation: (5)

$$(D^3 + 2D + 4)y = e^x \cos x$$

(b) Find the general solution of the differential equation using method of variation of parameters: (5)

$$(D^2 + 4D + 4)y = 2 \frac{e^{-2x}}{x^2}$$

3. (a) Find the general solution of the ordinary differential equation (5)

$$(D^2 - 1)y = x\sin x + e^{-x} (1 - x^2)$$

(b) Using convolution theorem find the inverse Laplace transform of (5)

$$\frac{s}{(s^2 \pm a^2)^2}$$

- 4. (a) If $L[f(t)] = \bar{f}(s)$, then find the Laplace transform of $\frac{f(t)}{t}$, provided it exits.
 - (b) Using Laplace transforms, find the particular solution of the differential equation:

 (5)

$$y'' + y = u(t - 1), \quad y(0) = 0, \quad y'(0) = 20$$

(2)

PART B

5. (a) Prove that

$$\int_0^\infty \frac{\sin w}{w} \cos wx \ dw = \begin{cases} \frac{\pi}{2} & \text{if } 0 \le x < 1\\ \frac{\pi}{4} & \text{if } x = 1\\ 0 & \text{if } x > 1 \end{cases}$$

- (b) Find the complex Fourier series of the periodic function: f(x) = x, if $-\pi < x < \pi$, $p = 2\pi$.
- 6. (a) Find the general solution of the partial differential equation (5)

$$x(x^2 + 3y^2) p + -y(3x^2 + y^2) q = 2z(y^2 - x^2).$$

- (b) Let $f(x) = 1 x^2$ (-1 < x < 1) be a periodic function with period p = 2. Find the Fourier series for f(x).
- 7. (a) Find the solution of one-dimensional heat equation corresponding to a bar of length L such that the temperature u(x,t) at the ends of the bar is kept zero and the initial temperature of the bar is given by u(x,0) = f(x): (10)

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}. \quad c^2 = \frac{K}{\sigma \rho}$$