Exam.Code:0906 Sub. Code: 7955

1079

B.E., Semester EE-201: Basic Electrical Engineering

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, selecting atleast two questions from each Part.

PART -A	
a) Find the current in the 10 Ohm resistor in the network shown below by star-c	lelta Mar
transformation	5,5
b) Calculate the value of R which will absorb maximum power from the circuit, Also, complete the value of maximum power. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Q.II a) Drive relation between line current and phase current, line voltage, and phase voltage in case of	delta 5,5
connected 3-phase circuit.	
b) Define Resonant frequency and hence determine the same for the parallel circuit shown below	v:
10 sin ωτ (4) \$3 H	
Q.III (a) Two wattmeters are used to measure the power in a three-phase balanced circuit. What is the power in a three-phase balanced circuit. What is the power in a three-phase balanced circuit.	ower 5,5
factor of the load when (i) both the meters read equal, (ii) document negative, and (iii) one reads twice the other. (b) A balanced star connected load of per phase is connected to a 400 V, three-phase, supply. Find the (i) line current, (ii) power factor, (iii) real power, (iv) reactive power, a	50Hz nd (v)
1 1 = 30mH The input cuitett tags the supply	, 00
Q.IV a) In a series RL circuit, R=10Ω while L=30mm the value of applied frequency and find the real power supplied if the voltage is V=120 s. Obtain the value of applied frequency and find the real power supplied if the voltage is V=120 s.	113 (3)1 ;

b) Prove using phasor diagram that the three phase power remain same in star and delta connected load.

PART-B

- Q.V a) Explain the term permeability of free space and relative permeability. How is reluctance to related to permeability?
 - **b)** A coil of 200 turns and resistance of 20 Ω is wound uniformly on an iron ring of mean circumference 20 cm and cross section area 3 cm². It is connected to a 10 V dc supply. Under these conditions, the relative permeability of iron is 1000. Calculate the values of:
 - (a) the reluctance of the ring
- (b) magnetizing force

- (c) the MMF
- Q.VI a) Draw the phasor diagram for a leading power load connected transformer. Hence show various quantities used in the phasor.
 - b) The no-load test is conducted on a single phase transformer. The following test data are obtained.

Primary voltage, $V_1 = 230 \text{ V}$, secondary voltage, $V_2 = 115 \text{ V}$

Primary current, $I_0 = 0.6 \text{ A}$, Power input, $W_0 = 32 \text{ W}$

Resistance of the primary winding, $R_1 = 0.5 \Omega$

Find the following:

- 1) Turns Ratio
- 2) The magnetizing components of the no-load current
- Its working (or) loss component
- 4) Iron loss

Draw no-load phasor diagram to scale.

- Q.VII a) Deduce the expression for the voltage regulation of a transformer. When is the voltage regulation of transformer zero?
 - b) Explain the concept of slip in an induction motor. What is the maximum possible speed of the induction motor when the slip is 4 %.
- Q.VIII a) Give the construction features of a squirrel cage induction motor. Hence explain why rotor bar are short circuited by end rings.
 - b) Explain the applications of DC shunt and series machines. Give reasons for the same.