Exam.Code:0905 Sub. Code: 6650 ## 1079 ## B.E. (Mechanical Engineering) First Semester CH-101: Applied Chemistry (Common with ECE and EEE) Time allowed: 3 Hours Max. Marks: 50 NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. x-x-x | 1 | (a) Write the formula of the catalyst used in oxo and Monsanto acetic acid process. (b) In IR spectroscopy why the region bellow 1500 cm⁻¹ is called as fingerprint region? (c) Define β-transition temperature (d) What are the disadvantages of Valence bond theory (e) Explain why the heat of neutralization of strong acid and strong base always higher than weak acid and weak base | [2]
[2]
[2]
[2] | |---|--|--------------------------| | | PART-A | | | 2 | (a) The heat of combustion of CH₄ (g) at constant volume is measured in a bomb calorime 298 K and found to be -885.3 kj/mol. find the value of enthalpy change. (CH₄). (b) Calculate the enthalpy of hydrogenation of ethylene given that the enthalpy of combe ethylene, hydrogen and ethane are - 1410.0, -286.2 and -1560.6 kj/mol at 298 K. (c) Explain the working of Carnot cycle. How it is used to calculate the efficiency of an heap the effici | [3].
ustion of
[3] | | 3 | (a) How Oxo process is different from Wacker process? write the stepwise mechanism for process (b) Derive Michaelis-Menton's equation for enzyme catalysis. When the reaction rate is order? | [5] | | 4 | (a) Butadiene shows absorption at higher wavelength than ethylene. Explain with the he molecular orbital diagram and Ψ function. (b) On the basis of IR spectroscopy, how can you distinguish between the following: (i) Alkane, alkene and alkyne (ii) Aldehyde and ketone (b) Which of the following will absorb at higher wave number for C=O stretching justify answer. | [4]
[4]
your | | | | [2] | CH₃ | | lacular weight 10, | ,000 | |----|--|------| | | (a) A polymer sample consists of 10 % by weight of macromolecules of molecular weight 1,00,000. calculate Mn and Mw. 90 % by weight of macromolecules of molecular weight 1,00,000. calculate Mn and Mw. | [3] | | | to earsists of 10 % by weight of mass weight 1,00,000. calculate ivin | [3] | | | (a) A polymer sample consister of molecular weight examples. | [4] | | | 90 % by weight of macro polymerization was of polyamides | | | | and the median. | [3] | | | (c) Explain detailed it | [4] | | : | (c) Explain detailed synthesis, properties and (c) Explain detailed synthesis, properties and (c) Explain the electrochemical mechanism of rusting of iron in humid atmosphere (a) Explain the electrochemical mechanism of hydrogen-oxygen fuel cell (b) Discuss the construction and working of hydrogen-oxygen fuel cell | [3] | |). | (b) Discuss the construction and working over (secting corrosion) | | | | (b) Discuss the construction (c) Discuss the factors affecting corrosion | | | | (a) Calculate the CFSE of the following compounds | [6] | | 7. | (a) Calculate the CF3L of the Follows (ii) [Cu(NH ₃) ₄] ²⁺ , (ii) [Co(en) ₃] ³⁺ , (iii) [Zn(Cl) ₄] ²⁺ (i) [Cu(NH ₃) ₄] ²⁺ , (ii) [Co(en) ₃] ³⁺ , (iii) [Zn(Cl) ₄] ²⁺ | | | | (a) Calculate the Croz of (a) (a) Calculate the Croz of (b) Cu(NH ₃) ₄] ²⁺ , (ii)[Co(en) ₃] ³⁺ , (iii)[Zn(Cl) ₄] ²⁺ (b) Briefly explain the crystal field splitting in (i) octahedral and (ii) square planar complexes | [4] | | | (2) | | | | Y-Y-Y | |