B.E. (Electrical 1019
 Sixth Semester
 EE-612: Signal and System

${ }^{1}$ TE: Attempt five questions in all, including $Q u e s t i o n$ and selecting two questions from each Section Question No. I which is compulsory

$$
x-x-x
$$

Q.No. 1 (i) What do you mean by singularity functions?
(ii) Show that if $\mathrm{x}(\mathrm{t}) \stackrel{\mathrm{FT}^{\top}}{\leftrightarrow} \mathrm{X}(\mathrm{j} \omega)$ then $\mathrm{x}(\mathrm{at}) \stackrel{\mathrm{F}_{T}}{\leftrightarrow} \ldots \ldots$?
(iii) State the Dirichlet conditions for fourier series.
(iv) Find the Laplace transform of $t^{n} u(t)$?
(v) If $X(z)=1+2 z^{-1}+z^{-2}$, determine the initial and final values of the corresponding sequence $x(n)$.

Section - A

Q.No. 2 (a) Explain in detail the classification of signals.
(b) Find the impulse response $h(n)$ for each of the LTI discrete time systems given by the difference equations as below. Indicate whether each system is an FIR or an IIR system.
(i) $y(n)=x(n)-2 x(n-2)+x(n-3)$
(ii) $y(n)+2 y(n-1)=x(n)+x(n-1)$
(iii) $y(n)=(1 / 2) y(n-2)+2 x(n)-x(n-2)$
Q.No. 3 (a) Find the exponential form of fourier series of the given waveform:

(b) An LTI system is described by differential equation:

$$
\frac{d^{2} y(t)}{d t^{2}}+4 \frac{d y(t)}{d t}+3 y(t)=\frac{d x(t)}{d t}+2 x(t)
$$

(i) Find the impulse response of the system.
(ii) If $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-1} \mathrm{u}(\mathrm{t})$, find the output $\mathrm{y}(\mathrm{t})$.
Q. No. 4 (a) Define sampling theorem. Also, explain aliasing.
(b) Determine the discrete fourier series representation for the sequence $x(n)=\left(\cos \frac{\pi}{3} n(5)\right.$ $\left.+\sin \frac{\pi}{4} n\right)$

Section-B

Q.No. 5 (a) Determine the fourier transform of the following sequences:
(i) $x(n)=1$
(ii) $\delta\left(n-n_{0}\right)$
(iii) $(n+1) a^{n} u(n)$
(b) Mention atleast seven properties of discrete time fourier transform.
Q.No.6 (a) Find the inverse Laplace transform $h(t)$, given $H(s)=\frac{S-1}{(S+1)(s-2)}$ and
comment on stability and causality of the system for various ROC's. (b) Find the Z-transform of following signals:
(i) $x(n)=\cos n \omega_{0} u(n)$
(ii) $x(n)=(1 / 2) n(n-1) u(n)$
Q.No. 7 (a) What is Hilbert transform? List the properties of Hilbert transform.
(b) List down the properties of Z-transform.

