B.E. (Mechanical Engincering)
 Fourth Semester MEC-402: Mechanics of Materials-II

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

$$
x-x-x
$$

Q1. (a) Describe Tresca Failure Criterion in brief.
(b) Siate first and second moment area theorems.
(C) Briefly describe lateral stability of beams.
(d) State and prove Castigliano's First Theorem.
(e) State and prove Stiffness coefficients reciprocity.

Part-A

 (ensile). Using Mohr's circle method, find the normal, tangential stresses and resultant stresses and its obliquity
on a planel on a plane 20° with the major principal plane.
(b) What
(b) What do you mean by Strain Rosettes? Describe various types of stain Rosettes.

Q3. (a) In a steel member, at a point the major principal stress is $180 \mathrm{MN} / \mathrm{m}^{2}$ tensile and the minor principal stress is compressive. If the tensile yield point of the steel is $225 \mathrm{MN} / \mathrm{m}^{2}$, find the value of minor principal stress al which yielding will commence using distortion energy criterion of failure.
(4 Marks)
(b) A bent rectangular bar is subjected to an inclined force of 3000 N , as shown in figure 1 below. The cross section of the bar is $12 \times 12 \mathrm{~mm}$. Determine the state of stress at point A caused by the applied force and aso finds the maximum principal stress.
(6 Marks)

Figure: 1
(3 Marks)
Q4. (a) Derive an expression for moment curvature relation.
(b) A beam $A B$ of span 8 meters is simply supported at the ends. It carries a uniformly distributed load of
$30 \mathrm{KN} / \mathrm{m}$ over its entire length and a concentrated load of 60 KN at 3 méters from support ' A ' (left Support).
Delermine the maximum deflection in the beam and the location where the deflection occurs.
Take: $E=200 \times 10^{6} \mathrm{KN} / \mathrm{m}^{2} \quad$ and $\quad I=80 \times 10^{-4} \mathrm{~m}^{4}$
(7 Marks)

C5. (a) Define criteria for stability of equilibrium in columns. Discuss various types of equilibrium. (3 Marks)
(b) The aluminium column is fixed at its bottom and is braced at its top by cables so as to prevent
movement at the top along X axis as shown in the figure 2 below. If it is assumed to be fixed at its base,

$C_{P a}, \pi_{y}=215 \mathrm{MPa}, A=7.5 \times 10^{-3} \mathrm{~m}^{2}, \mathrm{I}_{\mathrm{x}}=61.3 \times 10^{-6} \mathrm{~m}^{4}, \mathrm{I}_{\mathrm{y}}=23.2 \times 10^{-6} \mathrm{~m}^{4}$.

26. (a) Consider an elastic beam fixed at both ends and subjected to a uniformly increasing load to one end
 theorem Take El for team is constant

Figure: 3
(b) A man weighing 80 kg jumps on a diving board as shown in figure 4 below from a height of 0.6 mete What maximum bending stresses will this cause in the board? The diving board is $50 \times 300 \mathrm{~mm}$ in ctou section. Take $\mathrm{E}=12 \mathrm{GPa}$. Use virtual force method to determine deflection characteristics of the board

Figure 4
(1) (a) A two span continuous elastic beam on simple supports carries a uniform distributed load as shown in the figure 5 betow. Using flexibility coefficients method determine the reactions at a, b and c. Also plot the clasta curve

保保

