B.E. (Biotechnology) Fourth Semester
 BIO-412: Thermodynamics

Time allowed: 3 Hours
Max. Marks: 50
NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section. Assume missing data, if any, reasonably.

$$
x-x-x
$$

i. What is Gibbs phase rule for a nonreactive system?
ii. Define activity coefficient.
iii. Define partial molar properties.
iv. What is chemical potential?
v. What is enthalpy of a system? How is it related to internal energy?
vi. When muscles contract, chemical energy is converted to mechanical energy with the loss of heat. Define the law of thermodynamics which this example represents.
vii. Which molecule is considered to be the energy currency of cells?
viii. What is inversion temperature?
ix. Give examples of intensive and extensive properties.
x. A container filled with a sample of an ideal gas at the pressure of 1.5 atm. The gas is compressed isothermally to one-fourth of its original volume. What is the new pressure of the gas?

Section A

II (a) If a gas of volume $6000 \mathrm{~cm}^{3}$ and at a pressure of 100 kPa is compressed quasistatically according to $\mathrm{PV}^{2}=$ constant, until the volume becomes 2000 cm^{3}, determine the final pressure and the work transfer.
(b) 2 kilo mole of CO_{2} occupies a volume of $0.380 \mathrm{~m}^{3}$ at 313 K . Calculate the pressure using ideal gas equation and van der Waals equation. Take van der Waals constants to be $a=0.365 \mathrm{Nm}^{4} / \mathrm{mol}^{2}$ and $b=4.28 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{mol}$.

III (a) What is the principle of operation of an absorption refrigeration system?
(b) Explain the Claude process for the liquefaction of air. Derive an expression for the liquid yield obtained from the process.

IV One mole of ideal gas, initially at $150^{\circ} \mathrm{C}$ and 8 bar pressure, undergoes the 10 following mechanically reversible changes: It expands isothermally to a pressure such that when it is cooled at constant volume to $50^{\circ} \mathrm{C}$ its final pressure is 3 bar. Calculate the work, heat transferred, changes in internal energy and changes in enthalpy for the process. Take $C_{P}=(7 / 2) R$ and $C_{v}=(5 / 2) R$.

$-2-$

Section B

V (a) Initially n_{0} moles of ammonia are present which dissociate according to the equation $N H_{3} \leftrightarrow \frac{1}{2} N H_{2}+\frac{3}{2} H_{2}$. Show that at equilibrium $K=\frac{\sqrt{27}}{4} \frac{\varepsilon^{2}}{1-\varepsilon^{2}} P$. (b) The enthalpy of a binary liquid system for species 1 and 2 at fixed Temperature (T) and pressure (P) is given by equation $H=x_{1} x_{2}\left(40 x_{1}+20 x_{2}\right)$ where H is in $\mathrm{J} /$ mole. Determine expression for \bar{H}_{1} and \bar{H}_{2} as a function of x_{1}, and the numerical values for the partial enthalpies at infinite dilution $\bar{H}_{1}{ }^{\text {a }}$ and $\bar{H}_{2}{ }^{\text {o }}$.

VI An equimolar mixture of $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}_{2}$ (g) enters a reactor which is 10 maintained at 1000 K and 5 bar. The following reaction takes place

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

Calculate the equilibrium constant at 1000 K and estimate the degree of conversion of methane into products. Also estimate the composition of the reactor effluent assuming that the reaction mixture behaves like an ideal gas.

$$
\begin{aligned}
& C_{p}=a+b T+c T^{2}+d T^{3}+e T^{-2}(J / \mathrm{mol} \mathrm{~K}), \\
& \Delta H_{r x n}^{o}=206.408 \mathrm{~kJ}, \Delta G_{r \times n}^{o}=141.933 \mathrm{~kJ} \\
& C_{p_{C O}}=28.068+4.631 \times 10^{-3} T-0.258 \times 10^{5} T^{-2} \\
& C_{p_{H_{2}}}=27.012+3.509 \times 10^{-3} T+0.690 \times 10^{5} T^{-2} \\
& C_{p_{C H_{4}}}=17.449+60.449 \times 10^{-3} T+1.117 \times 10^{-6} T^{2} \\
& C_{p_{H_{2} O}}=28.850+12.055 \times 10^{-3} T+0.690 \times 10^{5} T^{-2}
\end{aligned}
$$

VII Binary system Acetonitrile (1)/Nitromethane (2) conforms closely to Raoult's 10
law Wore $\ln P_{1}^{s a t}(k P a)=14.2724-\frac{2945.47}{t\left({ }^{\circ} \mathrm{C}\right)+224}$
$\ln P_{2}^{s a l}(k P a)=14.2043-\frac{2972.64}{t\left({ }^{\circ} \mathrm{C}\right)+209}$
Prepare a $t-x$-y diagram for a pressure of 70 kPa .

