1019

B.E., Third Semester APH-203: Quantum and Statistical Physics (Common with ECE, IT, EEE and ECE)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part. x-x-x

 $\lambda - \lambda - \lambda$

Attempt any five parts (2 x 5=10)

- (a) Why no Compton effect is observed when an photon gets scattered from K shell electron of Uranium atom.
- (b) Heisenberg's uncertainty principle is a natural consequence of wave nature of associated with moving microscopic particle.
- (c) Give two distinguishing features between three kinds of statistics obeyed by different physical systems.
- (d) What are the postulates of special theory of relativity.
- (e) What are time like events. Do they obey principle of causality.
- (f) What is correspondence principle and give its significance in quantum physics.
- (g) Why a particle can't be at rest in the infinitely deep one dimensional potential well.

PART A

11	(a)	Derive Lorentz transformation for position and time coordinates using basic postula	tes of
		special theory of relativity.	(6)
	(b)	Using Lorentz transformation, obtain the relation for length contraction.	(4)
111	III (a) What is relativistic Doppler effect in light. Derive the expression for change in frequency of		
		light in case of longitudinal Doppler effect.	(5)

- (b) Show that $(E/c)^2 p^2$ is invariant under Lorentz transformations. (5)
- IV (a) Discuss Max Born's interpretation of wavefunction associated with a moving particle. (6)
 - (b) Using Heisenberg uncertainty principle, show that the electron can never be constituent of (4)

PTO

PART B

(7)

(3)

A particle of mass m and kinetic energy E is incident on a one dimensional potential step height V₀, such that E < V₀. Solve Schrodinger's equation for this particle and list the observations. How do these observations differ from the expectations of classical mechanic V (a) (3)

(b) Prove the identity that
$$[x^2, p_x] = 2i\hbar x$$

VI. (a) Give an account on quantum theory of hydrogen atom.

X-X-X

- (b) Write a brief note on Zeeman effect.
- VII What is thermionic emission? Using appropriate formalism of statistical physics, derive the (1 expression for Richardson Dushmann equation.

17