1019

B.E. (Bio-Technology)
 Second Semester
 MATHS-201: Differential Equations and Transforms
 (Common to all streams)

Time allowed: 3 Hours
Max. Marks: 50
NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part. Use of non-programmable calculator is allowed.

$$
x-x-x
$$

1. (a) Find the Laplace transform of $\frac{\sin t}{t}$.
$(5 \times 2=10)$
(b) Define even and odd functions and write the corresponding Fourier series for these functions with period $p=2 L$.
(c) Formulate the partial differential equation by eliminating the arbitrary constants: $z=a(x+y)+b(x-y)+a b t+c$ where z is a function of three independent variables x, y, t and a, b, c are arbitrary constants.
(d) Solve the differential equation: $(x-y)^{2} \frac{d y}{d x}=1$.
(e) Define unit step function and find its Laplace transform.

PART A

2. (a) Solve the following differential equations:
(a) $y^{\prime}+y=\frac{1}{1+e^{2 x}}$.
(b) $y^{\prime \prime \prime \prime}-4 y^{\prime \prime \prime}+14 y^{\prime \prime}-20 y^{\prime}+25 y=0$
(b) Find the inverse Laplace transform of $\ln \frac{s+1}{s-1}$.
3. (a) Find the general solution of the ordinary differential equation

$$
\begin{equation*}
\left(D^{3}-2 D+4\right) y=x^{2}+e^{3 x} \tag{5}
\end{equation*}
$$

(b) Find the general solution of the differential equation using method of variation of parameters:

$$
\begin{equation*}
\left(D^{2}+9\right) y=\sec 3 x \tag{5}
\end{equation*}
$$

4. (a) FInd the inverse Laplace transform of

$$
\begin{equation*}
\frac{s e^{-s / 2}+\pi e^{-s}}{s^{2}+\pi^{2}} \tag{5}
\end{equation*}
$$

(b) Evaluate $/$, $\left[e^{-4 u} \int_{0}^{t} \frac{\sin 3 u}{u} d u\right]$.
P.T.O.

-2-

PART B
5. (a) Find the Fourier cosine transform of $f(x)=e^{-a x}, a>0$.
(b) Find the Fourier series of the periodic function $f(x)=x^{2}$, if $-1<x<$ with $p=2$.
6. (a) Find the general solution of the partial differential equation

$$
\begin{equation*}
2 x\left(y+z^{2}\right) p+y\left(2 y+z^{2}\right) q=z^{3} . \tag{5}
\end{equation*}
$$

(b) Let $f(x)=\pi+|x|(-\pi<x<\pi)$ be a periodic function with period 2π. Find the Fourier series for $f(x)$.
7. (a) Find the temperature $u(x, t)$ in a bar of length L. Both the ends of the bar are kept at temperature zero and the initial temperature of the bar is given by $u(x, 0)=f(x)$. The one-dimensional heat equation is given by

$$
\begin{equation*}
\frac{\partial u}{\partial t}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad c^{2}=\frac{K}{\sigma \rho} \tag{10}
\end{equation*}
$$

