1019
 B.E.,$^{2 n d}$ Semester
 AS-201: Engineering Math - II (OLD)

Time allowed: $\mathbf{3}$ Hours

Max. Marks: 50
NOTE: Attempt five questions in all, selecting atleast two questions from each Part.
$x-x-x$
PART A

1. (a) Solve the following differential equations:
(i) $\frac{d y}{d x}=\frac{2 x+3 y+1}{3 x-2 y-5}$
(ii) $(x y \sin x y+\cos x y) y d x+(x y \sin x y-\cos x y) x d y=0$.
(b) Find the Laplace transform of $f(t)=\frac{e^{-a t}-e^{-b t}}{t}$.
2. (a) Find the general solution of the ordinary differential equation

$$
\begin{equation*}
\left(D^{2}-5 D+6\right) y=x e^{4 x} \tag{5}
\end{equation*}
$$

(b) Find the general solution of the differential equation using method of variation of parameters:

$$
\begin{equation*}
\left(D^{2}+4\right) y=\sec 2 x \tag{5}
\end{equation*}
$$

3. (a) Solve the differential equation using Laplace transform:

$$
t y^{\prime \prime}+2 y^{\prime}+t y=\cos t, \quad y(0)=1
$$

(b) Find the general solution of the differential equation:

$$
\begin{equation*}
\left(D^{3}-2 D+4\right) y=x^{4}+3 x^{2} \tag{5}
\end{equation*}
$$

$t y^{\prime \prime}+2 y^{\prime \prime}+t y=\cos t, \quad y(0)=1$
4. (a) Evaluate $L\left[\int_{0}^{t} \int_{0}^{t} \int_{0}^{t} \cos (a u) d u d u d u\right]$.
(b) Evaluate $L^{-1}\left[\frac{1}{s^{3}-a^{3}}\right]$.

PART B
5. (a) Prove that

$$
\int_{0}^{\infty} \frac{\sin (\pi w) \sin (x w)}{1-w^{2}} d w= \begin{cases}\frac{\pi}{2} \sin (x) & \text { if } 0 \leq x \leq \pi \tag{5}\\ 0 & \text { if } x>\pi\end{cases}
$$

(b) Find the Fourier series of the periodic function $f(x)$ defined below, with period $p=2$

$$
\begin{equation*}
f(x)=1-|x|,(-1<x<1) \tag{7}
\end{equation*}
$$

5. (a) Find the general solution of the following partial differential:

$$
x(z+2 a p+(z x+2 y z+2 a y) q=z(z+a) .
$$

-2.

 constants:7. Find the D'Alemberts Solution of one dimensional wave equation for an elastic string of length L.
8. (a) Find the Fourier series for the following period function $f(x)=x^{2},(-1<$ $x<1) p=2$ and hence find the sum of the following series

$$
\begin{equation*}
1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+-\cdots \tag{7}
\end{equation*}
$$

(b) Formulate the partial differential equation by elimination of arbitrary function:

$$
z=y f\left(\frac{y}{x}\right)
$$

$x-x-x$

