51

de: 70

load of

iterial is

in shear

lever at

mes the

narks)

ength of

material

tension.

and the

e. It is

s in the

vidth of

narks)

Exam.Code:0941 Sub. Code: 7053

1129

B. E. (Mechanical Engineering) Fifth Semester

MEC-502: Computer Aided Design and Manufacturing (CAD/CAM)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

- I. Attempt the following:
 - a) Comment on the degree of B-Spline curve with 5 control points?
 - b) What is the need of geometric modeling?
 - c) Verify Euler's equation for a pentagonal pyramid.
 - d) Write the parametric and non parametric representation of ellipse?
 - e) What are the advantages of soft automation?
 - f) Differentiate between M07 and M08 NC code.
 - g) What is adaptive control?
 - h) Write 2-d homogeneous shear transformation, matrix.
 - i) Which G code is used to represent feed in mm/rev?
 - j) Write the parametric equation of Bezier surface.

(10x1)

UNIT - I

II. Develop the equation of a Bezier curve, find the points on the curves for t=0.1, 0.3,
 0.7 and 0.9 and plot the curve for the following data. The x, y coordinates of the four control points are given by:

 $x = [1 \ 2 \ 4 \ 3]; \ y = [1 \ 1 \ 3 \ 1];$ (10)

- III. Explain the role of CAD/CAM in designing and manufacturing new components in Modern Industries. (10)
- IV. Define the transformation matrix needed to reflect an object of rectangular shape about a line given by y = x + 2. The dimensions of the 2d object are [2, 2; 3, 2; 2, 3; 3, 3]. Determine and plot the final position of the Rectangular object. (10)

P.T.O.

UNIT-II

V. a) Describe the complete process of building a solid model from the graphic primitives with suitable example.

b) Explain the rotational and translational sweep techniques. (7,3)

- VI. a) What is adaptive type control system? Where it is recommended and what are the sources of variability in machining.
 - b) Explain about the offset radius compensation in NC/CNC machines and corresponding G-codes. (6,4)
- VII. a) Write a manual part program for finishing a forged component as shown in the Figure. Assume the spindle speed and feed for machining as 500 rpm and 0.3 mm/rev respectively. Take suitable assumptions.

b) Explain the use of subroutines in NC part programming with the help of a suitable example. (7,3)

x-x-x

Time a

OIL

I

Ι

II

I.

V