Sub. Code: 6848

on can be achieved in (2x5)

ematical proof.

SA with the help of (2x5)

(2x5)

Exam.Code:0923 Sub. Code: 6849

1129

B. E. (Information Technology) Fifth Semester

ITE-504: Design of Analysis of Algorithms

Time allowed: 3 Hours

Max. Marks: 50

(5,5)

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

Qn. 1. Attempt the following:-

- a) Define and explain the significance of O-notation?
- b) Differentiate between performance analysis and performance measurement.
- c) Which is a better strategy for problem solving: Greedy Strategy, Dynamic Programming or both? Justify.
- d) What are overlapping sub-problems? Give example
- e) Explain with example: Matrix multiplication using divide and conquer? (5x2=10)

PART-A

- Qn 2 a) Write an algorithm to find the sum of first and second minimum number from an array of integers. Also find its time and space complexity.
 - b) What are Asymptotic notations? Why they are used for machine independent analysis of algorithms. Arrange the following complexities from low to high:

 $O(n^3)$, $O(2^n)$, $O(n\log n)$, $O(n^4 + n\log n)$, $O(n^4 + n^2 + n)$, $O(n^2 + \log n)$. (5,5)

Qn 3. a) What is the greedy choice property? Find the feasible and optimal solutions for the following knapsack instance. (Given n=3, M = 60):

 $I=\{11,12,13\}$; $W=\{10,20,30\}$; $P=\{100,120,140\}$

- b) Discuss the characteristics of problems solved using Divide and conquer. Discuss the best. average and worst case time complexity of Quick sort algorithm.
- Qn 4 a) What is a minimum cost spanning tree? Illustrate the working of Kruskal's algorithm to find minimum cost spanning tree. Discuss the time complexity for its execution.
 - b) Discuss the role of recurrence relations in algorithm analysis. Solve by Master Method: $T(n) = 3T(n/2) + n^2$. Also draw the recursion tree for the given recurrence relation. (5,5)

PART-B

- a) What do you mean by optimal substructures? Illustrate it by using forward approach used to Qn 5 solve the multistage graph problem.
 - b) Explain the Travelling salesman problem. Find the minimum cost of the tour by using (5,5)travelling salesman problem if starting from city A.

,	A	В	C	D
A	-	6	10	11
В	10	-	14	20
C	15	11	-	15
D	9	7	5	-

- Qn 6 a) What is a N-Queens problem? Explain the bounding function used to solve 8-queens problem and provide a solution using the backtracking approach.
 - b) Find the shortest path between all pairs of vertices in the following graph? Discuss the strategy applied to solve the problem and its complexity.

- Qn 7 a) Solve the following sum of subset problem. Draw portion of state space tree till first feasible solution is obtained and provide relevant explanation:
 - n=7, (w1,w2,w3,w4,w5,w6,w7) = (10,7,5,18,12.20,15), m=35
 - b) Write short notes on: NP Completness, Reducibility