5984

1,3)

Exam.Code: 0935 Sub. Code: 6985

1129 B.E. (Electrical and Electronics Engineering) Fifth Semester EE-509: Control Engineering – II

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Part.

x-x-x

- 1. (i) What do you mean by state space analysis?
 - (ii) Prove the identity:

$$\phi(t_2-t_1). \phi(t_1-t_0) = \phi(t_2-t_0)$$

- (iii) Write the statement of Caley Hamilton theorem.
- (iv) Differentiate between feedforward and feedback.
- (v) Write selection parameters for compensators.

 (5×2)

Part A

2. (i) Consider a system with state model:

$$\dot{x} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u : x(0) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Compute state transition matrix.

(5)

(ii) Test the following system for Observability:

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$$
 (5)

- Design a phase lag compensator using bode plot and root locus. Compare the two designs.
- 4. Block diagram model of a position control system is as shown:

- (i) In the absence of derivative feedback $(K_1 = 0)$, determine the damping ratio of the sy for amplifier gain $K_A = 5$. Also find e_{ss} for unit ramp input.
- (ii) Find suitable values of parameters K_A and K_t so that the damping ratio is increased without affecting steady state error as obtained in part (i).

Part B

- 5. (i) Explain sampling process with suitable waveforms.
 - (ii) Find z-transform of $I(t) = u(t) e^{-\lambda t}$
- 6. For the following system, determine characteristic equation in z-domain and ascertain its stavia bilinear transformation.

- 7. (i) Explain digital temperature control system with the help of block diagram.
 - (ii) Discuss the application of Programmable Logic Control on digital control systems.