Exam.Code:0935 Sub. Code: 6984

1129

B.E. (Electrical and Electronics Engineering) Fifth Semester

EE-508: Electromagnetic Fields Theory

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

Attempt the following:-

- a) State Gauss's law for electric field.
- b) Write down the equation for Ampere's law in the differential vector form.
- c) What is the complex Poynting vector?
- d) State the magnetic boundary conditions.
- e) Write the point form of continuity equation.

(5x2)

UNIT - I

- a) Prove that divergence of a curl of a vector is zero, using Stoke's theorem. II.
 - b) Determine the curl of the following vector field:

$$A = yza_x + 4xya_y + ya_z \tag{2x5}$$

- III. a) Derive continuity equation for current.
 - b) Obtain the expression for energy stored in magnetic field and also derive an expression for magnetic energy density. (2x5)
- IV. a) Define Biot-Savart law and Ampere's law.
 - b) State Poisson's equation and explain their significance in field theory. (2x5)

UNIT - II

- V. a) From the fundamental laws, obtain the Maxwell's equations in integral form and differential form.
 - b) Define conduction and displacement current. (6,4)
- VI. State and explain Faraday's law of electromagnetic induction. Hence derive the expressions for statically and dynamically induced emfs. (10)

P.T.O.

(2x5)

WM at

odulat

(2x5)

ode: 6

d over

(2x5)

VII. a) What do you mean by inductance and mutual inductance?

b) Derive the Laplace and Poisson's equations.

c) Compare electric and magnetic circuits.

(3,4,3)

x-x-x