Exam.Code:0929 Sub. Code: 6910

1129

B.E. (Electronics and Communication Engineering) Fifth Semester

EC-502: Digital Signal Processing

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

- a. Discuss the circular addressing modes of TMS320C5X processor.
 - b. Compare FIR and IIR filters.
 - c. State and prove the following properties of z-transform.
 - i. Time scaling
 - ii Differentiation
 - d. Explain the relation between the z-transform and DFT.
 - e. What are the effects of finite word length in digital filters?

(5×2)

Section A

- 2. a. Describe the Discrete Cosine Transform. Discuss the applications of Wavelet transform. (5+5)b. Given $x(n) = 2^n$ and N=8, find X(k) using DIT FFT algorithm.
- 3. a. Find the response of an FIR filter with impulse response $h(n) = \{1,2,4\}$ to the input sequence $x(n) = \{1,2\}$ using linear and circular convolution. Compare the results. b. State and prove the following properties of DFT: convolution, time scaling. (5+5)
- 4. a. Determine the inverse z-transform of the system function

$$X(z) = \frac{1}{(1+0.2z^{-1})z^{-2}}$$

b. Explain Goertzel Algorithm for computation of DFT. Discuss its computational complexity.

Section B

- 5. a. Describe the frequency domain analysis of Decimator. What are the effects of decimation on frequency spectrum of the signal?
 - b. Determine H(z) for a Butterworth filter satisfying following constraints

$$\sqrt{0.5} \le |H(e^{jw})| \le 1 \qquad 0 \le w \le \pi/2$$

$$\left| H(e^{jw}) \right| \le 0.2$$
 $3\pi/4 \le w \le \pi$ with T = 1s. Apply impulse invariant transformation. (5+5)

6. a. Name the different types of window functions. How they are defined?

b. Obtain the cascade realization of the system characterized by the transfer function

$$H(z) = \frac{2(z+2)}{z(z-0.1)(z+0.5)(z+0.4)}$$
(5+5)

- 7. a. Apply bilinear transformation to $H(s) = \frac{2}{(s+1)(s+3)}$ with T'= 0.1s.
 - b. Discuss the architecture of TMS320CXX series processor and also discuss the (5+5)memory management block.