1129
 M.E. (Mechanical Engineering)
 Third Semester
 Elective - III
 MME-302(e): Optimization Techniques

Time allowed: 3 Hours
Max. Marks: 50
NOTE: Attempt five questions in all, selecting atleast two questions from each Part.
$x-x-x$
PART-A

1. A farmer has 1000 acres of land on which he can grow Corn, Wheat and Soyabeans. Each acre of corn costs Rs. 100 for preparation, requires 7 man-days of work and yields profit of Rs. 30. An acre of wheat costs Rs. 120 to prepare, requires 10 man-days of work and yields a profit of Rs. 40. An acre of soyabeans costs Rs 70 to prepare, requires 8 man-days of work and yields a profit of Rs 20. If the farmer has Rs $1,00,000$ for preparation and can count on 8,000 man-days work, Formulate the L.P problem to allocate the number of acres to each crop to maximize the total profit and solve.
2. Use the Big M- method to

$$
\begin{gather*}
\text { Maximize } Z=6 X_{1}-3 X_{2}+2 X_{3} \\
\text { Subject to } \\
2 X_{1}+X_{2}+X_{3} \leq 16 \\
3 X_{1}+2 X_{2}+X_{3} \leq 18 \\
X_{2}-2 X_{3} \geq 8 \tag{10}\\
X_{1}, X_{2}, X_{3} \geq 0
\end{gather*}
$$

3. Solve the non linear programming problem:

Maximize

$$
\mathrm{Z}=2 \mathrm{X}_{1}-\mathrm{X}_{1}^{2}+\mathrm{X}_{2}
$$

Subject to

$$
\begin{align*}
& 2 X_{1}+3 X_{2} \leq 6 \\
& 2 X_{1}+X_{2} \leq 4 \\
& X_{1}, X_{2} \geq 0 \tag{10}
\end{align*}
$$

4. (a) Describe the significance of formulating Hessian matrix in NLPP.
(b) Give the Kuhn-Tucker conditions for both maximization \& minimization non-Linear programming problem with one inequality constraint.

PART-B

5. Solve the following mixed integer problem by the branch and bound technique:

Minimize

$$
Z=10 X_{1}+9 X_{2}
$$

Subject to

$$
\begin{align*}
& \mathrm{X}_{1} \leq 8 \\
& \mathrm{X}_{2} \leq 10 \\
& 5 \mathrm{X}_{1}+3 \mathrm{X} 2 \geq 45 \\
& \mathrm{X}_{1} \mathrm{X}_{2} \geq 0, \mathrm{X}_{2} \text { integer } \tag{10}
\end{align*}
$$

6. A sales girl is scheduled to visit six different cities P, Q, R, S, T and U. The distance matix in kilometers for all cities is given below:

She plans to start her journey from City P and to return back to this city after visist: all the cities vithout visiting any city more than once. Find the sequence of the cities for her programme for minimum total distance travelled. What is total distance travelled.
7. (a) How Heuristic models are better as compared to traditional optimization tecluiphes solve real world problems.

(3)

(b) What are differences between Population based optimization techniques and point to po optimization techniques.
8. Write Short note on:
(a) Different genetic operators
(b) Cutting plane algorithm
(c) Fitness function

