B. Engg. (Electrical and Electronics Engg.)

3rd Semester

MATHS-301: Linear Algebra and Complex Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Q. No. I which is compulsory and selecting atleast two questions each from Unit I-II. Use of simple calculator is allowed.

**_

- I. (a) Define subspace of a vector space. Prove that $w = \{(x, y) | x = 3y\}$ is a subspace of \mathbb{R}^2 .
 - (b) Find basic for column space of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 0 \end{bmatrix}$.
 - (c) Check $T: \mathbb{R}^2 \to \mathbb{R}^3$, where T(x, y) = (x + y, x y, y) is linear transformation or not.
 - (d) Define Kernel and image of a linear mapping with a suitable example.
 - (e) Prove that similar matrices have the same eigenvalues.
 - (f) Prove that $f(z) = \overline{z}$ is not analytic at any point.
 - (g) Find the image of the circle $|z| = \lambda$ under the transformation w=5z.
 - (h) Locate and classify the singular points of $f(z) = \frac{z \sin z}{z^3}$
 - (i) Find the pole and residue at the pole of the function $f(z) = \frac{z}{z-1}$.
 - (j) For what values of constant k does the system: x-y=3, 2x-2y=k, have no solution, exactly one solution and many solutions. (10×1)

UNIT-I

- II. (a) Prove that the vectors (2.3.0), (2,1.0) and (8,13,0) are the early dependent in R³. Find the relation between them.
 - (b) Find the rank of the matrix: $A = \begin{bmatrix} 1 & 2 & 4 & 0 \\ -3 & 1 & 5 & 2 \\ -2 & 3 & 9 & 2 \end{bmatrix}$.
 - (c) Find the values of μ for which the system of equations: x + y + z = 1, $x + 2y + 3z = \mu$, and $x + 5y + 9z = \mu^2$ will be consistent. For each value of μ obtained, find the solution f the system. (3+3+4)
- III. (a) Does the vector $\vec{b} = (3.4.5)^r$ lie in the column space of $A = \begin{bmatrix} 1 & 2 & -1 \\ 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix}$? Justify.
 - (b) Prove that the set of vectors $\{(2,1,4),(1,-1,2),(3,1,-2)\}$ forms a basis of \mathbb{R}^3 .
 - (c) Prove that linear transformation $T: R^2 \to R^2$ defined by $T(x_1, x_2) = (x_1 \cos \theta + x_2 \sin \theta, -x_1 \sin \theta + x_2 \cos \theta)$ is a vector space isomorphism's. (3+3+4)

IV. (a) Consider the matrix mapping $A: R^4 \to R^3$, where $A = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3 \end{bmatrix}$. Find a basis and the dimension of (i) the image

of A, (ii) the Kernel of A. Also verify Rank-Nullity theorem.

- (b) Find the matrix P that diagonalizes $A = \begin{bmatrix} 1 & 0 \\ 6 & -1 \end{bmatrix}$. Also determine
- (c) Consider the linear operator T on R^2 defined by T(x,y) = (5x+y,3x-2y) and the following bases of R^2 : $s = \{(1,2),(2,3)\}$ and $s^{-1} = \{(1,3),(1,4)\}$.
 - (i) Find the matrix A representing T relative to the basis S.
 - (ii) Find the change of basis matrix P from S to S¹. (4+3+3)

UNIT-II

- V. (a) Find the values of z such that $z = e^{\frac{\pi}{3}}$.
 - (b) Find the constants a,b,c such that the function: $f(z) = -x^2 + xy + y^2 + i(ax^2 + bxy + cy^2)$ is analytic. Express f(z) in terms of z.
 - (c) Prove that the function $u(r,\theta) = r^2$ is harmonic. Find its conjugate harmonic and the corresponding function f(z). (3+3+4)
- VI. (a) Find the Laurent's expansion for $f(z) = \frac{7z-2}{z^3-z^2-2z}$ in the following regions:
 - (i) 0 < |z+1| < 3 (ii) |<|z+1| < 3
 - (b) Evaluate $\int_{C} \frac{\sin \pi z^2 + \cos \pi z^2}{(z-1)^2(z-2)} dz$, when C is the curve |z| = 3. (5+5)
- VII. (a) Evaluate $\int_{0}^{2\pi} \frac{-\cos 3\theta}{5 4\cos \theta} d\theta$ using complex integration.
 - (b) Find two bilinear transformations whose fixed points are 1 and 2.