e: 6777

e same

city as (4,6)

ies are

BCNF? (2x5)

Update

allow (2x5)

covery

2x5)

Exam.Code:0915 Sub. Code: 6778

1129

B.E. (Computer Science and Engineering) Third Semester CS-303: Discrete Structures

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

- 1. Briefly explain the following with example:
 - (a) Reflexive and Irreflexive relations
 - (b) K-Regular graph
 - (c) Monoid
 - (d) Recurrence relation
 - (e) Quantifiers

(5x2=10)

Section-A

- 2. (a) Consider the universal set $U=\{1,2,3,4,...,10\}$ and the subsets $A=\{1,7,8\}$, $B=\{1,6,9,10\}$, $C=\{1,9,10\}$
 - I. List the non-empty minsets generated by A, B and C. Do the minsets form a partition of U?
 - II. How many elements of U can be generated by A, B and C?
 - III. Compare the number obtained in II. with n(P(U)).

(4)

- (b) If R be a relation in the set of integers Z defined by $R = \{(x, y): x \in Z, y \in Z, (x-y)\}$
- is divisible by 6}. Then prove that R is an equivalence relation.

(4)

- (c) Is the Implication and its inverse logically equivalent? Justify your answer. (2)
- 3. (a) Show that the mapping $f: R \rightarrow R$ be defined by f(x) = ax + b, where $a, b, x \in R$, $a \ne 0$ is invertible. Find its inverse. (4)
 - (b) Determine the negation of the following statements
 - I. $\forall_x \forall_y \forall_z, p(x, y, z)$
 - II. $\forall_x \exists_y, p(x, y)$
 - III. $\forall_x \forall_y (p(x) \land q(y))$
 - (c) Consider the function $f: N \rightarrow N$, where N is the set of natural numbers including zero defined by $f(n) = n^2 + 2$. Check whether the function f is (i) one-one (ii) onto. (3)
 - 4. (a) Let $D_{100} = \{1, 2, 4, 5, 10, 20, 25, 50, 100\}$ whose all the elements are divisors of 100. Let the relation < be the relation | (divides) be a partial ordering on D_{100} .

(3)

- I. Draw the Hasse diagram of the given poset.
- Determine the glb of {10,20} and {5,10,20,25} II.
- Determine the lub of (10,20) and {5,10,20,25} III.

(5)

- (b) Prove the validity of following arguments without using truth tables.
 - I. $p \vee q, \neg p \vdash q$

II.
$$p, p \rightarrow q, q \rightarrow r \mid r$$

III. $p \rightarrow (q \lor r), (s \land t) \rightarrow q, (q \lor r) \rightarrow (s \land t) \mid p \rightarrow q$

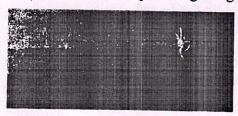
(3)

(2)

(c) Let R be a binary relation on A such that (a, b) ∈ R, if book 'a' costs more and contains fewer pages than book 'b'. Is R an Equivalence Relation or a Partial Order Relation? Justify. (2)

Section-B

- 5. (a) Prove that total number of permutations of n different things taken not more than r at a time, when each thing may be repeated any number of times is n(n'-1)/(n-1).
 - (b) Consider $a \in R$ as a constant real number. Assume $G = \{a^n : n \in Z\}$. Prove that G is an abelian group under usual multiplication. (5)
- 6. (a) Solve the recurrence relation $a_r-2a_{r-1}+a_{r-2}=2^r$, r>=2, by the method of generating function satisfying the boundary conditions $a_0=2$, $a_1=1$. (6)
 - (b) Define order and size of a graph. Describe Complement and Subgraph of a graph giving examples. (4)
- 7. (a) Discuss the Breadth-First Traversal technique using the given graph. (6)



- (b) What do you understand by counting techniques? Explain.
- (c) Define an algebraic structure. Differentiate between a ring and a field. (2)