1129
 M.E. (Mechanical Engineering)
 First Semester
 MME-101: Advanced Engineering Mathematics

Time allowed: $\mathbf{3}$ Hours
Max. Marks: 50
NOTE: Attempt five questions in all, selecting atleast two questions from each Part.
$x-x-x$

PART A

1. (a) Solve the following differential equation by power series method:

$$
\begin{equation*}
\left(x^{2}+1\right) y^{\prime \prime}+x y^{\prime}-x y=0 \tag{5}
\end{equation*}
$$

(b) Using recurrence relatios, show that

$$
\begin{equation*}
\text { 4. } J_{n}^{\prime \prime}(x)=J_{n-2}(x)-2 J_{n}(x)+J_{n+2}(x) \tag{5}
\end{equation*}
$$

2. (a) Prove that $\int_{-1}^{1} P_{m}(x) \cdot P_{n}(x) d x=0, n \neq m$.
(b) Find a basis of solutions by Frobenius method:

$$
\begin{equation*}
x y^{\prime \prime}+5 y^{\prime}+x y=0 \tag{5}
\end{equation*}
$$

3. (a) Find a general solution in terms of J_{2} and J_{-1} or indicate if not feasiobe

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{16}\right) y=0
$$

(b) Prove that $J_{n}(x)$ is the coefficient of z^{n} in the expression of $e^{\frac{x}{2}}\left(z-\frac{1}{z}\right)$.
4. (a) Find the eigen values and eigen functions of the following differential equation:

$$
\begin{equation*}
y^{\prime \prime}-2 y^{\prime}+(\lambda+1) y=0, \quad y(0)=0, y(1)=0 \tag{5}
\end{equation*}
$$

(b) Show that $P_{2 n}(0)=(-1)^{n} \frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{2 \cdot 4 \cdot 6 \ldots 2 n}$.

PART B

5. Use the Runge-Kutta fourth order method to find $y(0.2)$ with $h=0.1$ for the initial value problem

$$
\begin{equation*}
\frac{d y}{d x}=\sqrt{T-y} \quad y 00=: \tag{.0}
\end{equation*}
$$

6. Using Picard's method. solve the differential equation:

$$
\begin{equation*}
\frac{d y}{d x}=\ddot{x}-y \tag{10}
\end{equation*}
$$

given that $y(0)=1$ and find $y(0.2)$ to five decimal places.
7. Find the values of $u(x, t)$ satisfying the parabolic equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ with boundiary conditions $u(0, t)=0=u(j, t)$ and $u(x, 0)=5 x-x^{2}$ at the points:

$$
\begin{equation*}
x=i: i=0,1,2,3,4,5 \text { and } y=j: j=0,1,2,3,4,5 . \tag{10}
\end{equation*}
$$

8. Solve $16 \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} y}{\partial t^{2}}$ taking $h=1$, upto $t=1.25$. under the conditions $u(0, t)=u(5, t)=$ $0, u_{\ell}(x, 0)=0$ and $u(x, 0)=x^{2}(5-x)$.
