1129
M.E. (Information Technology) First Semester
MEIT-101/111: Algorithm Analysis and Design
Time allowed: 3 Hours
Max. Marks: 50
NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.
$x-x-x$
I. Attempt the following:-
a) Explain: Asymptotic analysis. Profiling?
b) How is space complexity computed?
c) What is complete Bipartite matching?
d) What is Strassen's multiplication approach?
e) Discuss advantages and limitation of using recursion.
f) Find the complexity of Brute force string matching algorithm.
g) Explain the optimal substructure property with example?
h) Why are slack variables used in linear programming?
i) What are deterministic algorithms?
j) Explain the best case, average case and worst case of binary search algorithm?

UNIT - I

II. a) Write an algorithm to calculate exponent x^{n}, of a given number x , where $\mathrm{n}>=0$. Also find its time and space complexity.
b) What is a recurrence relation? Solve the fol
recursion - tree method: $T(n)=2 T(n / 2)+$ nlgn.
III. a) Discuss a strategy and an algorithm to find the minimum cost spanning tree. Comment on the time complexity of the algorithm.
b) Given two sorting methods: Merge sort and Quick sort, which is having better performance? Justify your answer in terms of best and worst case scenario. (2×5)
P.T.O.
IV. a) Justify the reason for applying a particular kind of algorithm design strategy for solving the two variants of the knapsack problem. Use greedy strategy to solve the following instances of the fractional Knapsack problem: $n=3, m=20$, ($\mathrm{pl}, \mathrm{p} 2, \mathrm{p} 3$) $=(25,24,15)$ and $(\mathrm{wl}, \mathrm{w} 2, \mathrm{w} 3)=(18,15,10)$ for finding the optimal solution. Discuss its complexity.
b) Explain the - All pairs shortest path problem? Discuss how the principle of optimality is applied to find solution to the problem.

UNIT - II

V. a) Discuss the technique for solvin implementation logic and complexity of n-queens problem. Illustrate the
b) Discuss the strategy and find possible solutions of the following sum of subset problem: $n=4,(w l, w 2, w 3, w 4)=(11,13,24,7), \quad m=31$
VI.
a) Explain the Knuth-Morries-Pratt algorithm and discuss its complexity.
b) What is flow of network problem? Discuss its two applications.
VII. and the steps to solve a linear programming problem.
b) Write short note on: NP-hard and NP-complete classes.

$$
\begin{equation*}
x-x-x \tag{5,5}
\end{equation*}
$$

