Exam.Code:1005 Sub. Code: 7799

1129

M.E. (Information Technology) First Semester

MEIT-101/111: Algorithm Analysis and Design

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

- Attempt the following:
 - a) Explain: Asymptotic analysis. Profiling?
 - b) How is space complexity computed?
 - c) What is complete Bipartite matching?
 - d) What is Strassen's multiplication approach?
 - e) Discuss advantages and limitation of using recursion.
 - f) Find the complexity of Brute force string matching algorithm.
 - g) Explain the optimal substructure property with example?
 - h) Why are slack variables used in linear programming?
 - i) What are deterministic algorithms?
 - j) Explain the best case, average case and worst case of binary search algorithm? (10x1)

UNIT - I

- a) Write an algorithm to calculate exponent x^n , of a given number x, where $n \ge 0$. 11. Also find its time and space complexity.
 - b) What is a recurrence relation? Solve the following recurrence relation using recursion - tree method: T(n) = 2T(n/2) + nlgn. (2x5)
- a) Discuss a strategy and an algorithm to find the minimum cost spanning tree. III. Comment on the time complexity of the algorithm.
 - b) Given two sorting methods: Merge sort and Quick sort, which is having better performance? Justify your answer in terms of best and worst case scenario. (2x5)

P.T.O.

- IV. a) Justify the reason for applying a particular kind of algorithm design strategy for solving the two variants of the knapsack problem. Use greedy strategy to solve the following instances of the fractional Knapsack problem: n=3, m=20, (pl,p2,p3)=(25.24,15) and (wl,w2,w3)=(18,15,10) for finding the optimal solution. Discuss its complexity.
 - b) Explain the All pairs shortest path problem? Discuss how the principle of optimality is applied to find solution to the problem. (5.5)

UNIT - II

- V. a) Discuss the technique for solving the n-queens problem. Illustrate the implementation logic and complexity of the algorithm.
 - b) Discuss the strategy and find possible solutions of the following sum of subset problem: n=4. (wl,w2,w3,w4) = (11,13,24,7), m=31 (5,5)
- VI. a) Explain the Knuth-Morries-Pratt algorithm and discuss its complexity.
 - b) What is flow of network problem? Discuss its two applications. (5,5)
- VII. a) Discuss the applications of Linear Programming. Explain the problem formulation and the steps to solve a linear programming problem.
 - b) Write short note on: NP-hard and NP-complete classes. (5,5)