## M.E. Electrical Engineering (Power Systems) <br> $1^{\text {st }}$ Semester

## EE-8103: Optimization Techniques

## Time allowed: 3 Hours

Max. Marks: 50
NOTE:
Attempt.five questions in all. Use of simple calculator is allowed.
I. Given the linear programming problem:

Maximize $z=3 x_{1}+5 x_{2}$
Subject to the constraints: $x_{1} \leq 4, x_{2} \leq 6,3 x_{1}+2 x_{2} \leq 18$, $x_{1}, x_{2} \geq 0$

Discuss the effect on the optimality solution when the objective function is changed to $3 x_{1}+2 x_{2}$.
II. Consider the problem of transporting TV sets of a particular brand (TVX) from 2 warehouses to 3 retail shops. The demand in the three retailers in 80,60 and 90 while 100 and 120 sets are available in the two warehouses. The cost of transportation is defined as a unit cost of transportation on item from a warehouse to retailer and these are given in the following table: Supply, demand and costs.

| 4 | 6 | 5 | 100 |
| :--- | :---: | :---: | :---: |
| 5 | 7 | 8 | 150 |
| 80 | 60 | 90 |  |

Find the optimal solution with least total cost of transportation.
III. (a) What is convex programming problem and what is its signifiance?
(b) Consider the problem:

Minimize $\quad f(x)=x_{1}^{2}+x_{2}^{2}+2 x_{2}$
Subject to $\quad 2 x_{1}+3 x_{2} \geq 1, \quad x_{1}^{2}+x_{2}^{2} \leq 1$ $x_{1}, x_{2} \geq 0$
(i) Are the point $\left(\frac{1}{2}, 0\right)^{T}$ and $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$ are local optimal solution of the problem? Give reasons for your answer.
(ii) Test if any one of these two solutions is an optimal solution.

Sub. Code: 7781
(2)
IV. Apply Wolfe's method to solve the quadratic programming problem:

Maximize $\quad z=x_{1}+2 x_{2}-x_{2}^{2}$
Subject to $\quad x_{1}+2 x_{2} \leq 4, \quad 3 x_{1}+2 x_{2} \leq 6$

$$
\begin{equation*}
x_{1}, x_{2} \geq 0 \tag{1}
\end{equation*}
$$

V. (a) Solve the following nonlinear programming problem using K-T conditions:
Maximize $f(x)=4 x_{1}+6 x_{2}-2 x_{1}^{2}-2 x_{1} x_{2}-2 x_{2}^{2}+49$
Subject to $x_{1}+x_{2} \leq 2, \quad x_{1}, x_{2} \geq 0$.
(b) Write the dual of the following nonlinear programming problem:

Minimize $f(x)=x_{1}^{2}+x_{2}^{2}$
Subject to $x_{1}^{2}+x_{2}^{2} \leq 5, \quad x_{1}+2 x_{2}=4, \quad x_{1}, x_{2} \geq 0$
VI. (a) Use the steepest descent method to establish the next search direction to determine approximate minimum point of the function: $f(x, y)=x^{2}+y^{2}+x y \sin (x y)$, from the point $x=\frac{\pi}{3}, y=1$.
(b) Prove that Newton's method finds the minimum of a quadratic function in superior for the minimization of a non-linear function?
VII. (a) Write a note on generalized convex functions and their applications to nonlinear optimization problem.
(b) Over what subset of $\mathrm{R}^{2}$, the following funciton: $f\left(x_{1}, x_{2}\right)=x_{2} e^{-x_{1}}$, is quasi
convex and quasi-concave?
VIII. Minimize $z=\frac{-x_{1}+2 x_{2}}{5 x_{1}+3 x_{2}+2}$,

$$
\begin{align*}
& 5 x_{1}+3 x_{2}+2  \tag{10}\\
& \text { Subjct to constraints: } 3 x_{1}+6 x_{2} \leq 8, \quad 5 x_{1}+2 x_{2} \leq 10, \quad x_{1}, x_{2} \geq 0
\end{align*}
$$

