1129

M.E. (Electronics and Communication Engineering)
 First Semester
 ECE-1101: Advanced Digital Signal Processing

Time allowed: 3 Hours

Max. Marks: 50
NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

$$
x-x-x
$$

1. (a) Determine all possible signals having z-transform
(b) Obtain the 4-band polyph $\quad X(z)=\frac{1}{1-1.5 z^{-1}+0.5 z^{-2}}$
(b) Obtain the 4-band polyphase decomposition of IIR function:
(c) In brief, describe finite $H(z)=\frac{1+0.5 z^{-1}}{1-0.8 z^{-1}}$
(d) Differentiate fixed poind length effects in digital filters.
(e) Discuss limitations of LMS algorithm.

Section-A

2. (a) Derive the expressions for Forward and Inverse DCT. Discuss DCT as orthogonal
transform.
3. (a) A LPF is to be designed with the following desired response

Determine the filter coefficients $h(n)$ for $M=9$ using frequency sampling technique.

$$
H_{d}(\omega)= \begin{cases}e^{-j \psi \omega} & 0 \leq \omega \leq \frac{\pi}{3} \tag{5}\\ 0 & \frac{\pi}{3} \leq \omega \leq \pi\end{cases}
$$

(b) Derive the expression for frequency domain representation of Decimator. Discuss filter requirements for the decimator.
4. Design a digital Butterworth filter to satisfy the criterion

$$
\begin{array}{cc}
0.86 \leq H(\omega) \leq 1, & 0 \leq \omega \leq 0.26 \pi \tag{10}\\
H(\omega) \leq 0.2, & 0.52 \pi \leq \omega \leq \pi \\
\text { nt transformation. } &
\end{array}
$$

Using impulse invariant transformation.

Section-B

5. (a) Describe forward linear prediction filter with the help of equations and lattice structure. Determine all the FIR filters which are specified by the lattice parameters, $K_{1}=0.4, K_{2}=0.55, K_{3}=0.33$.
(5) $\quad I O$
(b) Derive Wiener-Hopf equation for Adaptive filter. Discuss one application of
adaptive filters. adaptive filters. and addressing modes.
(b) Discuss the Bartlett method and Welch method for power spectrum estimation.
6. Describe the following:
a. Active noise control
b. Wiener filters
c. Burg method
