maria (m)

Exam.Code:0999 Sub. Code: 7622

1129

M.E. (Computer Science and Engineering) First Semester Elective – II

CS-8109: Advanced Computer Architecture

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Question No. 1 which is compulsory and selecting two questions from each Unit.

X-X-X

- I. Explain in brief:
 - a) What is a data hazard? How to avoid it?
 - b) Computational granularity
 - c) CISC vs. RISC processor
 - d) Difference between data-parallel and object-oriented model
 - e) Busy-wait vs. Sleep-wait protocols

(5x2)

UNIT-I

- II. a) Consider a vector computer which can operate in one of the two execution modes at a time: one is the vector mode with an execution rate of $R_v = 10$ M flops, and the other is the scalar mode with an execution rate of $R_s = 1$ M flops. Let α be the percentage code that is vectorizable in a typical program mix for this computer.
 - i) Derive an expression for the average rate R_a for this computer.
 - ii) Plot R_a as a function of a in the range (0,1)
 - iii) Determine the vectorization ratio a needed in order to achieve an average execution rate of R_a = 7.5 M flops
 - iv) Suppose R_s =1 M flops and α = 0.7. What value of R_v is needed to achieve R_a = 2 Mflops?
 - b) How does a multiprocessor machine differ from multicomputer machine? Give two examples of each. (2x5)
- III. a) Given the data below, what is the impact of second-level cache associativity on its miss penalty?
 - i) Hit time L2 for direct mapped = 10 clock cycles.
 - ii) Two-way set associativity increases hit time by 0.1 clock cycles to 10.1 clock cycles.
 - iii) Local miss rate L2 for direct mapped = 25%
 - iv) Local miss rate L2 for two-way set associative = 20%
 - v) Miss penalty L2 = 100 clock cycles.

- b) What are VL1W processors? Discuss the various problems associated with the VLIW processor and measures for their mitigation. (2x5)
- IV. a) Explain and compare speedup performance-models.
 - b) What is cache coherence problem and when do you say a memory system is coherent? What are cache coherence protocols? (2x5)

<u>UNIT – II</u>

- V. a) Answer the following questions on design choices of multicomputers made in the past;
 - i) Why are low-cost processors chosen over expensive processors as processing nodes?
 - ii) Why was distributed memory chosen over shared memory?
 - iii) Why was message passing chosen over address switching?
 - b) How do static and dynamic topologies of interconnection differ? Explain different factors affecting the performance of interconnection networks? (6+4)
- VI. a) Explain the concurrent OOP and an actor model in object oriented model.
 - b) Draw and explain 16x16 Omega Network. Explain its routing technique with example. (2x5)
- VII. a) Explain principles of various synchronous mechanisms for inter-process communications.
 - b) Write all Bernstein Conditions.
 - c) Draw and explain the Cray Y-MP or CM-2 architecture.

(3+2+5)