1129

Lieupann.

B.E. (Bio-Technology) First Semester MATHS-101: Calculus (Common to all streams)

naintain 5V

(10)

Time allowed: 3 Hours

Max. Marks: 50

NOTE Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Unit.

x-x-x

L a) Find the constant a so that the vector $\vec{V} = (x + 3y) \hat{i} + (y - 2z) \hat{j} + (x + az) \hat{k}$ is solenoidal.

b) What does the ratio and root test say about Convergence of Infinite positive series?

c) Find v_x in terms of u and v if the equations $x = v \ln u$ and $y = u \ln v$ define u and v as functions of independent variables x and y.

d) State Gauss Divergence theorem?

e) Discuss the convergence of: $\sum_{n=1}^{\infty} \frac{5^n}{3+4^n}$ (5x2)

UNIT-I

II. a) Obtain the quadratic approximation to the function $f(x,y) = xy^2 + y \cos(x - y)$ about the point(1, 1). Find the maximum absolute error in the region) |x - 1| < 0.05, |y - 1| < 0.1.

b) Find the circumference (Length) of circle $x^2 + y^2 = r^2$. (5,5)

III. a) Discuss the convergence of the following:-

i)
$$\{a_n\}$$
 where $a_1 = \sqrt{5}$ and $a_{n+1} = \sqrt{5 + a_n}$

ii) $\sum a_n$ where $a_n = \begin{cases} (n/2^n) \\ (1/2^2), \end{cases}$ if n is a odd number

if n is a Even number

- b) Find the interval and radius of convergence for $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x+2)^n}{n2^n}$ and also find the values of x for which series converges conditionally. (5,5)
- IV. a) Examine the functional dependence of the functions $u = \frac{x+y}{x-y}$ and $u = \frac{xy}{(x-y)^2}$. If they are dependent, find the relation between them.
 - b) Find the volume of solid generated by revolving the region bounded by the curves y = -1 and $y = 3 x^2$ about the line y = -1. (5,5)

P.T.O.

lighlight two

rorking when r current and Beta dc of a (10)

n and deriverite condition (10)

UNIT - II

V. a) Evaluate $\int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dxdy$ and hence evaluate $\int_0^\infty e^{-x^2} dx$

ed Expressed briggst adj get the

- b) Define Binomial vector. Find Binomial vector for $\mathbf{r}(t) = t\hat{i} + (\mathbf{a} \cos(t/\mathbf{a})) \hat{j}$, a > 0. (5,5)
- VI. a) Find curvature and torsion for the curve $r(t) = (a\cos\alpha t)\hat{i} + (a\sin\alpha t)\hat{j} + bt\hat{k}, \alpha, a, b > 0$, $\alpha^2 a^2 + b^2 = 1$.
 - b) The derivative of f(x, y) at $P_0(x_0, y_0)$ in the direction of $(3\hat{i} + 4\hat{j})/5$ is 1 and in the direction of $(4\hat{i} 3\hat{j})/5$ is 3. Find a unit vector \hat{b} such that (i) $D_b f(P_a)$ is maximum and (ii) $D_b f(P_0)$ is minimum. (5,5)
- VII. a) Using Green's theorem, find the counterclockwise circulation of $\vec{F} = (y + e^x \ln y)\hat{i} + (e^x / y)\vec{j}$ around the boundary of the region that is bounded above by the curve $y = 3 x^2$ and below by the curve $y = x^4 + 1$.
 - b) State Stoke's theorem and verify it for the vector field $\vec{F} = (3x y)\hat{i} + -2yz^2\hat{j} 2y^2z\hat{k}$ where S is the surface of the sphere $x^2 + y^2 + z^2 = 16$, z > 0. (5,5)