

Exam. Code: 0919 Sub. Code: 6802

1108

B. Engg. (Computer Science and Engineering) 7th Semester

CS-701: Digital Image Processing

Time allowed: 3 Hours

Max. Marks: 50

Note: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

Q1.	a) What is log transb) Differentiate betoc) Define image degd) Give any two appe) Differentiate beto	ween co gradatio plicatio	oding, psy on. Explains of ima	ycovisua in the va ge segm nsform a	al and in arious carrious carrier	nter-pix auses c n techr	tel redu of degra iques.	undancy adation	y. in an imaş	ge.	10
Q2.	a) Define digital im digital image proce b) Explain how and	ssing?		What a	e the v						5 5
Q3.	diagram. a) Explain briefly to due to wrong lens at b) What is Fourier image. c) Explain image re	perture transf	setting. orm? Wr	ite exp	ession	of disc	crete I				4
Q4.	a) How can you con b) Perform histogra	nvert a	color spe	cified in	RGB 1	nodel t	o HIS	model?	ribution.		4
	Gray Level Number of	0 790	1023	2 850	3 656	329	5 245	6 122	7 81		

Gray Level		0	1	2	3	4	5	6	7
Number Pixels	of	790	1023	850	656	329	245	122	81

Section-B

- a) Define thresholding. Describe various thresholding methods for image segmentation. 6 Q5. Discuss the method to obtain optimal threshold.
 - b) The region growing algorithm starts with a seed pixel. The selection of the seed 4 pixel depends on application. You are given with application such as target detection in night vision. Suggest a way to choose seed pixel in this applications.
- a) What is region representation and description? Explain various regional descriptors. Q6. b) Define edge detection. What is the limitation of gradient based edge detection? Are 5 sobel masks appropriate for all images? Justify your answer.
- a) Find a set of code words and average word length using Huffman coding 7 Q7. scheme for a set of input gray levels with probabilities as given below:

Input	S1	S2	S3	S4	S5	S6	S7	S8
Probabilities	0.02	0.15	0.03	0.15	0.05	0.20	0.10	0.30

Compute the lowest possible average bits per gray level required to represent this data. b) Define chain code. Does the use of chain code compress the description information of an object contour?

17. and of or more than the second of the second (a) To take the second of the Programme and the state of the the reservoir and the second of the second o Zavi senstra