Exam. Code: 1017 Sub. Code: 7781

1108

M.E. Electrical Engineering (Power Systems) 1st Semester

EE-8103: Optimization Techniques

Time allowed: 3 Hours

Max. Marks: 50

Note: Attempt five questions in all.

$$x-x-x$$

1. (a) Consider the following linear programming problem and its optimal table below: (5)

$$\min \quad z = -2x_1 - 4x_2 - 2.5x_3$$

subject to $3x_1+4x_2+2x_3 \le 60$, $2x_1+x_2+2x_3 \le 40$, $x_1+3x_2+3x_3 \le 30$, $x_1,x_2,x_3 \ge 0$ Here, x_4,x_5,x_6 are slack variables.

Basic variables	x_1	x_2	x_3	x_4	x_5	x_6	Constant
x_1	1	0	-6/5	3/5	0	-4/5	12
x_5	0	0	3	-1	1.	1	10
x_2	0	1	7/5	-1/5	0	.9/15	6
-z	0	0	7/10	2/5	0	4/5	48

Suppose the coefficient of x_2 in the second constraint is changed from 1 to 2. Use sensitivity analysis to find the new optimal solution.

(b) Using bounded variable technique, solve the following LPP:

(5)

$$\max \quad Z = 6x + 2y + 3z$$

subject to

$$-2x + 4y + 2z \le 9, \quad -x - 2y + 3z \le 10$$

$$0 \le x \le 2$$
, $0 \le y \le 2$, $0 \le z \le 2$

2. Find the optimal solution of following bounded variable transportation problem to minimize the transportation cost: (10)

				availability
	3	7	6	15
Cost	2	4	3	22
	4	3	8	23
Requirement	20	15	25	

such that $x_{ij} \geq 0$ and the upper bounds are given in the following matrix:

$$[u_{ij}] = \left[\begin{array}{ccc} 12 & 15 & 20 \\ 13 & 22 & 10 \\ 10 & 11 & 12 \end{array} \right]$$

3. Use wolfe's method to solve the quadratic programming:

$$2x + y \le 1 \quad x, y \ge 0.$$

 $\min \quad Z = x^2 - xy + 2y^2 - x - y$

4. (a) Check whether following problem is a convex programming problem and verity the result graphically: (5)

subject to $x^2 + y^2 \le 1$, $x^2 \ge y$.

(b) Let for each i = 1, 2, ..., m, g_i be a convex function. Then prove that the set S is a convex set: (5)

$$S = \{x \in \mathbb{R}^n : g_i(x) \le 0, (i = 1, 2, ..., m)\}$$

- 5. Using Lagrange multiplier method, find the extreme values of $f(x, y, z) = xy + z^2$ on the on the circle in which the plane y x = 0 intersects the sphere $x^2 + y^2 + z^2 = 4$. (10)
- 6. (a) Let f(x) be differentiable at $x^* \in S$ and $\nabla f(x^*) \neq 0$. Then $\hat{d} = -\nabla f(x^*)$ is a usable feasible direction at x^* provided \hat{d} is a feasible direction. (5)
 - (b) Consider the NLP: max Z = ln(1+x) + y subject

$$2x + y \le 3$$
, $x, y \ge 0$

Write the KKT conditions. Given that the optimal solution of the above NLP lies on the line y=3, use KKT conditions to find its optimal solution. (5)

7. Using conjugate gradient method find the solution of the system:

$$x + y = 8$$
, $2x + y = 10$

You may take the starting point as $x^{(0)} = (0,0)^T$.

8. (a) Solve the following linear fractional programming problem by the simplex algorithm (6)

$$\max \quad Z = \frac{2x + y}{x - 2y}$$

subject to

$$x+y \le 6, \quad 2x+y \ge 4, \quad x,y \ge 0$$

(b) Write the Wolfe dual of the following NLP:

(4)

$$\max \quad Z = 2x + 4y$$

subject to $x^2 + y^2 \le 5$, $x - y \le 2$.

X- x-x