Exam.Code:1017 Sub. Code: 7780

## M.E. Electrical Engineering (Power Systems) **First Semester**

EE-8102: Power system Operation and Control

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt any five questions.

x-x-x

Consider the system given below where a load of 600 MW is being supplied by two generators. Q.1 Each transmission line has losses which are given by equations below.

$$P_{loss\,13} = 0.0001P_1^2$$
;  $P_{loss\,23} = 0.0002P_2^2$ 

The cost functions are as given

$$F_1(P_1) = 500 + 8P_1 + 0.002P_1^2$$

$$50MW \le P_1 \le 500MW$$

$$F_2(P_2) = 400 + 7.9P_1 + 0.0025P_2^2$$

$$50MW \le P_2 \le 500MW$$

Find the economic load dispatch and power flow in each line.



Calculate the optimal hydrothermal schedule using  $\lambda$  iterative scheme for the two plants Q.2. supplying a load connected at steam plant whose characteristics are given below:

$$H = 400 + 7.9P_1 + 0.0025P_2^2 \ (\frac{MBtu}{h})$$

$$150MW \leq P_1 \leq 1500MW$$

(10)

and the fuel cost is 1.15\$/MBtu

Hydro Plant: 
$$q = 330 + 4.97P_H$$
 Acre  $- ft/h$ 

$$0 \leq P_H \leq 1000MW$$

$$q = 5300 + 12(P_H - 100) + 0.05(P_H - 1000)^2 A cre - ft/h 1000 \le P_H \le 1100 MW$$

$$h = 1000 < P... < 1100MW$$

The hydro plant is located at a distance from the load and the losses are given by

 $P_{Loss} = 0.00008 P_H^2 MW$ . The hydro unit's reservoir is limited to 100000 acre-ft/day. Neglect inflow to the plant. The schedule of the load is 12 AM-12 PM =1200 MW and 12 PM-(10)12AM=1500MW.

Q.3. How is economic load dispatch different from that of a unit commitment? Develop a mathematical model for unit commitment solution for a system using forward dynamic programming (10)approach.

- Q.4. Derive an expression for tie-line power flow in a two area connected power system following a perturbation. Hence develop a linearized block diagram model for two area system for load frequency control. (10)
- Q. 5 Give the mathematical modeling of a pumped storage unit. Hence explain the role of pumped storage unit as load management plant. (10)
- Q, 6. a) Discuss the importance of following terms in context to a power system
  - i) Diversity factor
  - ii) Load factor
  - iv) Spinning Reserves

(5)

- b) What is the importance of load forecasting in power system operation? How many techniques are used to forecast load of a plant? Hence discuss any one if them. (5)
- Q.7 Describe the hardware configuration of a energy control center. Hence discuss the SCADA and EMS function in it. (10)
- Q,8. Write short Notes on;
  - i) Load sharing between two synchronous generators in parallel
  - ii) Economic dispatch controller added to LFC control

(2\*5=10)