1108

B.E. (Mechanical) First Semester CH-101: Applied Chemistry

(Common with ECE and EEE)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

I.	Answer the following briefly:	
	i) What is the order of different types of energies?	
	ii) Give the cell representation for ion selective electrodes.	
	iii) Fledict the kind of electronic transition in (a) Cla (b) C=O group	
	with all alkenes good monomers for polymerization reactions?	
	of the a difference between homogeneous and heterogeneous actalization	
	right dentity the state functions and path functions out of the following:	
	Enthalpy, entropy, heat, work, free energy	
	VII) Why a gas shows cooling effect in adjabatic expansion	
	List out the number of translational, rotational and vibrational degree	o of fine i
	201 (a) 110 (b) 02	s of freedor
	ix) Why does impure metal corrode faster than pure metal?	
	x) Represent the electronic configuration of following complexes using Cry	-4 1 P' 11
	Theory	stal Field
	(i)[Ni(NH ₃) ₆] ²⁺ (ii) [Cr(CN) ₆] ³⁻ (10 x 1 =	10)
	Section A	
	II a) To what pressure must a certain ideal gas $(C_p/C_v=1.4)$ at 373K and 1 pressure can be compressed adiabatic U_v :	24macah 2
	pressure can be compressed adiabatically in order to raise its temperature	to 772179
	(2)	11384
	b) Discuss the significance of A and G functions	(3)
	c) Discuss the dependence of enthalpies of reaction on temperature.	
	· · · · · · · · · · · · · · · · · · ·	(5)
	III a) Give brief outline of Wacker's process.	(2)
	b) Explain and illustrate the following:	(2)
	(i) Negative catalyst (ii) Catalytic inhibitors (iii) Enzyme catalysis	(3)
	c) Discuss homogeneous hydrogenation of alkenes.	
		(5)
	IV a) Illustrate the advantages of fuel cells.	. (2)
	b) Describe the construction of calomel electrode	(2)
	c) Discuss the mechanism of electrochemical corrosion.	(3)
		(5)

V. a) A solution contains 1:2 ratio of masses of particles of two substances with molar mass 10,000 g/mol and 20,000 g/mol, respectively. Determine the number average (M_n) and weight average (M_w) molar mass.

- b) Write a note on condensation polymerization (3)
- c) Discuss synthesis, properties and uses of polyesters. (4)
- VI a) Explain the following: (i) fundamental transition (ii) overtones (iii) finger print region (3)
 - b) Explain Beer-Lambert's law. Give their limitations. (3)
 - c) Which of the following three modes of vibration of a linear triatomic molecule AB3 are IR active.
 - (i) $B \rightarrow A \leftarrow B$ (ii) $B \rightarrow \leftarrow A \leftarrow B$
 - (ii) B A B

Give reasons in support of your answer. (4)

- VII a) Arrange the following octahedral complexes in decreasing order of their crystal field splitting. Give reasons also. $[CrF_6]^{3-}$, $[Cr(H_2O)_6]^{3+}$, $[Cr(NH_3)_6]^{3+}$, $[Cr(CN)_6]^{3-}$ (2)
- (b) Predict the magnetic behavior of following complexes $[Co(NH_3)_6]^{3+}, [Co(en)_3]^{3+}, [CoF_6]^{3-}, [Co(H_2O)_6]^{3+}$
- [CO(NH3)6], [CO(en)3], [COF6], [CO(n2O)6]
- (c) Discuss crystal Field Splitting in tetrahedral complexes. (4)