Attempt five questions in all, including Question No. I which is compulsory pll ${ }^{1 E:}$ and selecting two questions from each Part. Assume suitable data wherever necessary. $x-x-x$
(p) How do you add two harmonic motions having different frequencies?
(c) sugges a method for determining the damping constant of a highly damped vibrating (id) What assum viscous damping. (a) What is critical damping, and what is its importance?

Part A (All questions carry 10 marks each)

Question 2: Three springs and a mass are attached to a rigid, weightless bar PQ as shown in Fig. 12 Find the natural frequency of vibration and response of the system. Assume initial displacement as ' 'and initial velocity as ' v '.

Fig. 1 (Question 2)
Question 3: Derive the equation of motion and find the steady-state response of the system shown in Fig. 2 for rotational motion about the hinge O for the following data: $k=5000 \mathrm{~N} / \mathrm{m}, \mathrm{l}=1 \mathrm{~m}, \mathrm{c}=$ $1000 \mathrm{~N}-\mathrm{s} / \mathrm{m}, \mathrm{m}=10 \mathrm{~kg}, M_{0}=100 \mathrm{~N}-\mathrm{m}$, speed $=1000 \mathrm{rpm}$.

Fig. 2 (Question 3)
Question 4: Determine the steady-state response of the bar under a harmonic force, applied at the middle of the bar, as shown in the Fig. 3.

Fig. 3 (Question 4)

Part B (All questions carry 10 marks each)

 that moves inside a tube as shown in Fig. 4. A pendulum of length l and end mass m_{2} is connected ge to the piston. Derive the equations of motion of the system in terms of $x_{1}(t)$ and $u(t)$. (b) Derive the vibration of the system.

Fig 4 (Question 5)
Question 6: The mass matrix and eigen vectors of a vibrating system is given by

$$
[m]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad\left\{\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right\}, \quad\left\{\begin{array}{l}
1 \\
1 \\
1
\end{array}\right\}, \quad \text { and } \quad\left\{\begin{array}{l}
0 \\
1 \\
2
\end{array}\right\}
$$

Find the [m]-orthonormal modal matrix of the system.
Question 7: Derive equations of motion and solve the governing free vibration of a string with both
ends fixed.

$$
x-x-x
$$

