Exam.Code:0918 Sub. Code: 6797

1058

B.E. (Computer Science and Engineering) Sixth Semester Elective - 1 CS-605B: Soft Computing (Reappear)

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt five questions in all, including Question No. I which is compulsory and selecting two questions from each Section.

x-x-x

Q1.	 a) Differentiate between hard computing and soft computing. b) Give a general definition of an agent, and then explain how a simple reflex agent operates. c) Dart-throwing consists of randomly picking a candidate from the solution space. That candidate is accepted if it is the best solution found. In the light of this definition, what is the mos: fundamental difference and similarity between Simulated Annealing and dart-throwing? d) State the properties of the processing element of an artificial neural network. e) Define Defuzzification. List some of the methods to perform defuzzification. 	10
Section-A		
Q2.	a) Discuss briefly basic theory behind the Kalman Filter? b) An agent exists within an environment in which it can perform actions to move between states On executing any action it moves to a new state and receives a reward. The agent aims t explore its environment in such a way as to learn which action to perform in any given state so a in some sense to maximize the accumulated reward it receives over time.	5
	Give a detailed definition of a deterministic Markov decision process within the above state framework.	5
Q3.	a) Write a planning domain to solve a specific planning task of your choice using STRIP: formulation.	6
	classical sets.	4
Q4.	a) Define fuzzy logic. Using the inference approach, find the membership values for the triangula shapes for a triangle with angles as 60°, 40°, 80°.	6
	D Discuss Drieny Demster Shaler theory.	4
OF	a) Write a basic architecture model for Kohonen self-organizing man. Use 2 input units and	16
ųs.	cluster units and a linear topology for the cluster units. Perform 2 epochs of training.	10
00	b) Explain with the help of diagram architecture of adaptive Neuro-Tuzzy Interence concept.	4
<i>Ų</i> σ.	b) What is role of learning rate in neural net training? What is Gradient Descend and why it is so important in neural networks. What other techniques apart from learning rate can be used to optimize training process.	5
97.	Define genetic algorithm. A population consists of 3 different variables(x,y,z) whose values range from -10 to +10. Initialize 6 chromosomes from this population. Explain various types calencoding, selection, crossover and mutation techniques for the above population. Perform two generations. Assume a suitable fitness function	10

X-X-X