1058

B. Engg. (Computer Science and Engineering)

$6^{\text {th }}$ Semester
CS-602: Linear Algebra and Probability Theory
Time allowed: 3 Hours
Attempt five questions in all, including Q. No. I which is compulsory and selecting atleast two questions from each Unit. Use of statistical table and non-programmable calculator is allowed.

- *-*_*-
I. (a) Let $S=\{(-1,0,1),(2,1,4)\}$. Find the values of k for which the vector $(3 k+2,3,10)$ belongs to a linear if an of S.
(b) Let V be a 3-dimensional vector space over the field F of 3 elements. Then, what is the number of distinct 1 -dimensional sub-spaces of V ?
(c) Give an example of an infinite dimensional vector space.
(d) Show that if A is idempotent matrix, then all the eigenvalues of A are equal to 0 or I .
(e) Find the eigenvalues and eigen vectors of the matrix $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$.
(f) State central limit theorem.
(g) If a random variable X assume, the value 0 and 1 with $P=(X=0)=3 P(X=1)$ then find the variance of X ?
(h) Compute the correlation coefficient between random variables X and X if $V(X)=V(Y)=\frac{1}{4}$ and $V(X-Y)=\frac{1}{3}$.
(i) If λ is a Poisson variable such that $P(\lambda=2)=9 P(\lambda=4)+90 P(\lambda=6)$, then find the mean of λ.
(j) What is normal distribution? Draw a rough sketch of its probability density function and describe its two important properties.

UNIT-I

II. (a) Find the values of ' k ' such that the system of equations:
$x+k y+3 z=0,4 x+3 y+k z=0,2 x+y+2 z=0$ has non-trivial solution.
(b) Let μ be the vector space of all 3×3 real matrices and let $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$. Then, prove that $W=\{x \in M: \operatorname{trace}(A \lambda)=0\}$ is a subspace of μ.
III. (a) Let W be the subspace of R^{4} spanned by the vectors $\vec{V}_{1}=(1,-2,5,-3)$, $\vec{V}_{2}=(2,3,1,-4), \vec{V}_{3}=(3,8,-3,-5)$:
(i) Find the basis and dimension of W.
(ii) Expand the basis of W to a basis of R^{4}.

(2)

(b) Let $B_{1}=\{(1,2),(2,-1)\}$ and $B_{2}=\{(1,0),(0,1)\}$ be ordered basis of R^{2}. If $T: R^{2} \rightarrow R^{2}$ is a linear transformation such that $[T]_{B_{1}, B_{2}}$, the matrix of T with respect to bases B_{1} and B_{2} is $\left[\begin{array}{cc}4 & 3 \\ 2 & -4\end{array}\right]$. Then, find the value of $\mathrm{T}(5+5)$.
IV. (a) Check whether the matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 3 & -1 \\ 0 & -1 & 3\end{array}\right]$ in diagonalizable or not? If yes, then diagonalize it.
(b) State rank-nullity theorem. Find the basis and dimension of null space and image space of the transformation $T: R^{3} \rightarrow R^{3}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{2}, x_{1}-x_{2}, 0\right)$. Also, verify rank-nullity theorem.

UNIT-II

V. (a) A die is tossed twice. Getting a number greater than 4 is considered as a success. Find the mean and variance of the probability distribution of number of successes.
(b) Using Poisson distribution, find the probability that at most 5 defective bolts will be found in a box of 200 bolts if it is known that 2% of such bolts are expected to be defective (Take $e^{-4}=0.0183$).
VI. (a) State Chebyshev inequality. What is the approximate value of $P(1 \lambda-\mu \leq 2 \sigma)$ when we use Chebyshev inequality. Here, x denotes the continuous random variable having the following probability density function $f(x)=\left\{\begin{array}{ccc}630 & x^{4}(1-x)^{4}, & \text { if } 0<x<1 \\ 0 & \text { otherwise } & \end{array}\right.$
(b) A restaurant serves two special dishes A and B to its customer consisting of 60% men and 40% women. 80% of men order dish A and the rest B . 7% of women order B and the rest A . In what ratio of A to B should the restaurant prepare the two dishes?
VII. (a) Explain the relationship between binomial and normal distribution.
(b) In a normal distribution, 31% of items are under 45 and 8% are over 64 . Find the mean and standard deviation of the distribution. Also, find out what $\%$ of the items differ from the mean by a number not more than 5 ?

