1058

B. Engg. (Mechanical Engg.) 4th Semester

MEC-404: Numerical Analysis

Time allowed: 3 Hours

Max. Marks: 50

NOTE: Attempt <u>five</u> questions in all, including Q. No. 1 which is compulsory and selecting atleast <u>two</u> questions from each Unit. Use of simple calculator is allowed. Each question carries equal marks.

- I. Attempt the following: -
 - (a) What are significant digits? Round off to four significant digits:
 - (i) 49.85561
 - (ii) 0.0022218
 - (b) Define absolute error, relative and percentage error. Given that $C = 15300 \pm 100$, find the maximum value of the absolute error in C^3 .
 - (c) How does the secant method compare with Regular-Falsi method, Newton's method? List out the similarities and differences between them.
 - (d) Differentiate between interpolation and extrapolation. Write down any three uses of poly nomial interpolation.
 - (e) Explain the similarties and differences between Lagrange interpolation and Hermite interpolation.
 - (f) What is partial and complete pivoting? Explain why do we do pivoting.
 - (g) List out the limitation of Taylor series method.
 - (h) Evaluate: $\frac{\Delta}{E}(\sin x)$, taking 'h' as the interval of differencing.
 - (i) Give the error in Simpson's $\frac{1}{3}$ rd rule.
 - (j) What is economization of power series?

(5×2)

UNIT-I

- II. (a) Explain how error propagation can lead to numerical instability? Given that u(x,y,z)=xy+yz=zx, find the relative percentage error in the computation of u(x,y,z) at x=2.104, y=1.935 and z=0.845.
 - (b) Find the smallest positive root of equation $\tan x = x$, using iteration method correct to four decimal places. (5+5)
- III. (a) Find a quadratic factor of the polynomial $f(x) = x^3 x 1$, using Lin-Baisstow's method.
 - (b) Given $\sin 45^{\circ} = 0.7071$, $\sin 50^{\circ} = 0.7660$, $\sin 55^{\circ} = 0.8192$, $\sin 60^{\circ} = 0.8660$, find $\sin 52^{\circ}$, by using method of interpolation. (5+5)

IV. (a) Using the following table, find f(x) as a polynomial in powers of (x-3):
x: 5 11 27 34 42
f(x): 23 899 17315 35606 68510

(b) Apply Hermite's formula to find a cubic polynomial which meets the following conditions:

	xk:	$f(xk)$ $F^{1}(xk)$		
\mathbf{x}_1	0	0 0		
X ₂	1	1		
			AND THE PERSON OF THE PERSON O	(5+5)

UNIT-II

V. (a) Solve the following system by Gauss-Scidel iteration method: x-y+5z=7; x+4y-z=6, 6x+y+z=20

(b) Reduce the matrix:
$$A = \begin{bmatrix} 1 & 3 & 4 \\ 3 & 2 & -1 \\ 4 & -1 & 1 \end{bmatrix}$$
 to the tridiagonal form. (5+5)

- VI. (a) Explains power method for finding the dominant eigenvalue of a square matrix. Find the largest eigenvalue and the associated eigenvector of the matrix $A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ using it.
 - (b) Apply Romberg's method of show that $\int_{0}^{\frac{\pi}{2}} \sin x dx = 1.$ (5+5)
- VII. (a) Use Runge-Kutta fourth order method to find y(0.2) given that $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}, \quad y(0) = 1$
 - (b) Economize the power series $\sin x = x \frac{x^3}{6} + \frac{x^5}{120} \frac{x^7}{5040}$ (5+5)